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Abstract. We compare the characteristics of the charged-current quasielas-
tic (anti)neutrino scattering obtained in two different nuclear models, the phe-
nomenological SuperScaling Approximation and the model using a realistic
spectral function S(p, E) that gives a scaling function in accordance with the
(e, e′) scattering data, with the recent data published by the MINERνA Col-
laboration. The spectral function accounts for the nucleon-nucleon (NN) cor-
relations by using natural orbitals from the Jastrow correlation method and has
a realistic energy dependence. Both models provide a good description of the
data without the need of an ad hoc increase of the value of the mass parameter
in the axial-vector dipole form factor.

1 Introduction

The MINERνA Collaboration has recently measured differential cross sections
for neutrino and antineutrino charged-current quasielastic (CCQE) scattering on
a hydrocarbon target [1, 2]. “Quasielastic” events are defined, in this case, as
containing no mesons in the final state. The beam energy goes from 1.5 to
10 GeV and is peaked at Eν ∼ 3.5 GeV (please see Figure 1). At lower en-
ergies Eν ∼ 0.8 GeV (please see Figure 1) the MiniBooNE experiment has
reported [3] CCQE cross sections that are higher than most theoretical predic-
tions based on the impulse approximation (IA), leading to the suggestion that
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Figure 1. The predicted νµ (νµ) flux at the MINERνA [1,2] and MiniBooNE [3] detector.

non-QE processes induced by two-body currents may play a significant role in
this energy domain [4–7]. These effects have sometimes been simulated, in
the Relativistic Fermi Gas (RFG) framework, by a value of the nucleon axial-
vector dipole mass MA = 1.35 GeV [3], which is significantly larger than the
standard value MA = 1.032 GeV extracted from neutrino-deuterium quasielas-
tic scattering. On the other hand, higher-energy data from the NOMAD ex-
periment (Eν ∼ 3 − 100 GeV) [8] are well accounted for by IA models [9].
The MINERνA experiment is situated in between these two energy regions and
its interpretation can therefore provide valuable information on the longstand-
ing problem of assessing the role of correlations and meson exchange currents
(MEC) in the nuclear dynamics [10–12].

The predicted νµ (νµ) flux at the MINERνA and MiniBooNE detector are
compared in Figure 1. Φtot is the total integrated νµ (νµ) flux factor:

Φtot =

∫
Φ(ενµ)dενµ . (1)

In this paper we present results corresponding to two different nuclear mod-
els: the SuSA (SuperScaling Approximation) and the model using a realistic
spectral function S(p, E). Both have been extensively tested against existing QE
electron scattering data over a wide energy range. The detailed description of
these models can be found in our previous work (see, e.g., [13] and [14, 15]).
Here we just summarize their main features.

2 Theoretical Scheme and Results

SuSA [13] is based on the idea of using electron scattering data to predict CC
neutrino cross sections: a phenomenological “superscaling function” f(ψ), de-
pending only on one “scaling variable” ψ(q, ω) and embodying the essential
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nuclear dynamics, can be extracted from QE longitudinal (e, e′) data within a
fully relativistic framework. This function is then multiplied by the appropriate
charge-changing N→N (n→ p for neutrino and p→ n for antineutrino scatter-
ing) weak interaction cross sections to obtain the various response functions that
contribute to the inclusive neutrino-nucleus cross section [16]. On the one hand,
the model gives a good representation of the purely nucleonic contributions to
the existing QE electron scattering data, to the extent that the quasielastic scat-
tering can be isolated. On the other hand, it does not account for the inelastic
scattering and MEC which are mainly seen in the transverse channel. For the
former, the SuSA approach has been successfully extended to higher energies
into the non-QE regime where inelastic contributions dominate [17]. The lat-
ter have been modeled using extensions of the RFG for two-body operators and
typically cause 10− 20% scaling violations.

The second model we consider is the model using a realistic spectral func-
tion S(p, E) that gives a scaling function in accordance with the (e, e′) scattering
data [14,15]. Within the PWIA (see, e.g., [14,18] and details therein) the differ-
ential cross section for the (e, e′N ) process factorizes in the form[

dσ

dε′dΩ′dpNdΩN

]PWIA

(e,e′N)

= KσeN (q, ω; p, E , φN )S(p, E) , (2)

where σeN is the electron-nucleon cross section for a moving off-shell nucleon,
K is a kinematical factor and S(p, E) is the spectral function giving the probabil-
ity to find a nucleon of certain momentum and energy in the nucleus. In Eq. (2):
p is the missing momentum and E is the excitation energy of the residual system.
The scaling function can be represented in the form:

F (q, ω) ∼=
[dσ/dε′dΩ′](e,e′)

σeN (q, ω; p = |y|, E = 0)
, (3)

where the electron-single nucleon cross section σeN is taken at p = |y|, y being
the smallest possible value of p in electron-nucleus scattering for the smallest
possible value of the excitation energy (E = 0). In the PWIA the scaling function
Eq. (3) is simply given by the spectral function

F (q, ω) = 2π

∫∫
Σ(q,ω)

p dp dE S(p, E) , (4)

where Σ(q, ω) represents the kinematically allowed region.
In the RFG model the scaling function fRFG(ψ′) = kF ·F has the form [19]:

fRFG(ψ′) ' 3

4

(
1− ψ′2

)
θ
(

1− ψ′2
)
. (5)

In Ref. [14] more information about the spectral function was extracted within
PWIA from the experimentally known scaling function. It contains effects be-
yond the mean-field approximation leading to a realistic energy dependence and
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Figure 2. The 12C realistic spectral function S(p, E), which is constructed using natural
orbital single-particle momentum distributions from the Jastrow correlation method and
Lorentzian function for the energy dependence.

accounts for short-range NN correlations. It is written in the form:

S(p, E) =
∑
i

2(2ji + 1)ni(p)LΓi(E − Ei), (6)

where the Lorentzian function is used:

LΓi(E − Ei) =
1

π

Γi/2

(E − Ei)2 + (Γi/2)2
(7)

with Γi being the width of a given s.p. hole state. In the calculations we used
the values Γ1p = 6 MeV and Γ1s = 20 MeV, which are fixed to the experimen-
tal widths of the 1p and 1s states in 12C [20]. In Eq. (6) the s.p. momentum
distributions ni(p) were taken firstly to correspond to harmonic-oscillator (HO)
shell-model s.p. wave functions, and second, to natural orbitals (NOs) s.p. wave
functions ϕα(r) defined in [21] as the complete orthonormal set of s.p. wave
functions that diagonalize the one-body density matrix ρ(r, r′):

ρ(r, r′) =
∑
α

Nαϕ
∗
α(r)ϕα(r′), (8)

where the eigenvalues Nα (0 ≤ Nα ≤ 1,
∑
αNα = A) are the natural oc-

cupation numbers. In [14] we used ρ(r, r′) obtained within the lowest-order
approximation of the Jastrow correlation methods [22]. The realistic spectral
function S(p, E) is presented in Figure 2, where the two shells 1p and 1s are
clearly visible.

For accounting for the FSI we follow the approach given in Ref. [23] con-
cerning two types of FSI effects, the Pauli blocking and the interaction of the
struck nucleon with the spectator system by means of the time-independent op-
tical potential (OP) U = V − ıW . The latter can be accounted for [24] by the
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replacing in the PWIA expression for the inclusive electron-nucleus scattering
cross section

dσt
dωd|q| = 2πα2 |q|

E2
k

∫
dE d3p

St(p, E)

EpEp′
δ
(
ω+M −E −Ep′

)
Lem
µνH

µν
em, t (9)

the energy-conserving delta-function by

δ(ω +M − E − Ep′)→
W/π

W 2 + [ω +M − E − Ep′ − V ]2
. (10)

In Eq. (9) the index t denotes the nucleon isospin, Lem
µν andHµν

em, t are the leptonic
and hadronic tensors, respectively, and St(p, E) is the proton (neutron) spectral
function. The real (V ) and imaginary (W ) parts of the OP in (9) and (10) are
obtained in Ref. [25] from the Dirac OP.

The CC (anti)neutrino cross section in the target laboratory frame is given in
the form (see for details [13, 26])[

d2σ

dΩdk′

]
χ

≡ σ0F2
χ, (11)

where χ = + for neutrino-induced reaction (e.g., ν` + n→ `− + p, where ` =
e, µ, τ ) and χ = − for antineutrino-induced reactions (e.g., ν` + p → `+ + n).
The quantity F2

χ in (11) depends on the nuclear structure and is presented [13]
as a generalized Rosenbluth decomposition containing leptonic factors and five
nuclear response functions, namely charge-charge (CC), charge-longitudinal
(CL), longitudinal-longitudinal (LL), vector-transverse (T ) and axial-transverse
(T ′) expressed by the nuclear tensor and the scaling function. Here we note
that while the electron-nuclei scattering contains two electromagnetic response
functions (longitudinal RL and transverse RT ) and contains both isoscalar and
isovector contributions, in the CCQE scattering the nuclear responses are purely
isovector, typically transverse and have vector-vector, axial-axial and vector-
axial contributions.

In Figure 3 we present results for the scaling function f(ψ). The procedure
for the calculations of the scaling function f(ψ) is the following:

(i) The spectral function S(p, E) is constructed in the form of Eq. (6);

(ii) The single-particle momentum distributions ni(p) are taken to be either
corresponding to the HO single-particle wave functions or to the NOs
from the Jastrow correlation method;

(iii) The Lorentzian function [Eq. (7)] is used for the energy dependence of the
spectral function with parameters Γ1p = 6 MeV, Γ1s = 20 MeV, which
are fixed to the experimental widths of the 1p and 1s states in 12C [20];

(iv) For a given momentum transfer q = 1 GeV/c and energy of the initial
electron ε = 1 GeV we calculate the electron-nucleus (12C) cross section
by using Eq. (9) in which the spectral function S(p, E) [Eq. (6)] is used;
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Figure 3. Results for the scaling function f(ψ) for 12C obtained using HO+FSI and
NO+FSI approaches are compared with the RFG and SUSA results, as well as with the
longitudinal experimental data.

(v) The corresponding scaling functionF (q, ω) is calculated within the PWIA
by means of Eq. (3) and by multiplying it by kF the scaling function f(ψ)
is obtained;

(vi) To account for the FSI, the δ-function in Eq. (9) is replaced by Eq. (10)
with V and W parts obtained from the Dirac OP [25].

In this way the results for the HO+FSI (dashed line) and NO+FSI (dash-dotted
line) are obtained. As a reference are shown also the scaling functions in the
cases of SuSA (solid line) and RFG (dotted line). The accounting for FSI leads
to a small asymmetry of the scaling function. Also, we found that the asymmetry
in the scaling function gets larger by using the Lorentzian function [Eq. (7)]
for the energy dependence of the spectral function than by using the Gaussian
function [14, 15].

The results for the total cross sections obtained in [15] within the HO+FSI
and NO+FSI are given in Figure 4 and compared with the SuSA and RFG results
and the MiniBooNE [3] and NOMAD [8] data (up to 100 GeV). All models give
results that agree with the NOMAD data but underpredict the MiniBooNE ones,
more seriously in the νµ than in νµ cases. The discrepancy with the MiniBooNE
data (at energies < 1 GeV) is most likely due to missing effects beyond the
IA, e.g. those of the 2p-2h excitations that have contributions in the transverse
responses. This concerns also the similar disagreement that appears when the
phenomenological scaling function in SuSA is used. The latter, being exctracted
from the (e, e′) data is a purely longitudinal QE response and thus is nearly
insensitive to 2p-2h MEC contributions.

In Figures 5 and 6 we display the flux-folded differential cross section dσ/dQ2
QE

for both neutrino (Figure 5) and antineutrino (Figure 6) scattering off a hydro-
carbon (CH) target as a function of the reconstructed four-momentum transfer
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Figure 4. (left panel) CCQE νµ+12C total cross sections per nucleon displayed versus
neutrino energy Eν evaluated using the RFG, HO+FSI, NO+FSI, and SuSA approaches
with the standard value of the axial-vector dipole mass MA = 1.03 GeV/c2 are com-
pared with the MiniBooNE [3] and NOMAD [8] experimental data; (right panel) CCQE
νµ+12C total cross section.

squared (Q2
QE), that is obtained in the same way as for the experiment, assuming

an initial state nucleon at rest with a constant binding energy, Eb, set to 34 MeV
(30 MeV) in the neutrino (antineutrino) case. The cross sections are folded with
the MINERνA νµ and νµ fluxes [1,2], and the nucleon’s axial mass has the stan-
dard valueMA = 1.03 GeV. We observe that RFG, SuSA, HO+FSI and NO+FSI
approaches yield predictions in excellent agreement with the experimental data,
leaving not much space for large effects of 2p-2h contributions. HO+FSI and
NO+FSI results are higher than the SuSA ones and lie closer to the RFG results.
In the RFG calculation, we use the formalism of [27], assuming a Fermi momen-

Figure 5. Flux-folded CCQE νµ+12C scattering cross section per target nucleon as
a function of Q2

QE and evaluated in the SuSA, RFG, HO+FSI, and NO+FSI models;
data [1].
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Figure 6. Flux-folded CCQE νµ+12C scattering cross section per target nucleon as
a function of Q2

QE and evaluated in the SuSA, RFG, HO+FSI, and NO+FSI models;
data [2].

tum of 228 MeV/c and an energy shift of 20 MeV. This is not the same as the
RFG modeling of GENIE [28] and NuWRO [29], which could explain the slight
difference between our RFG results and the ones reported in [1,2]. Note that the
RFG model with the standard value of the axial mass (green-dashed curve) also
fits the data, being in very good agreement with the other approaches. Finally,
the spread in the curves corresponding to the four models is less than 7% in the
case of neutrinos and less than 5% in the case of antineutrinos. The theoreti-
cal results presented here include the whole energy range for the neutrino. The
experimentalists implement several cuts on the phase space of the data, such as
restricting the kinematics to contributions from neutrino energies below 10 GeV.
The impact of such a cut on the results we present here is smaller than 0.2%, in
the worst case. In the experimental analysis, several cuts were imposed to the
initial data sample to increase the ratio of true quasielastic events in the sample.
The effect of these cuts has been incorporated into the efficiency factors of the
experiment, and thus, the data have been corrected for them [30]. We apply no
cuts to the theoretical results, as the data have been corrected for their effect.

3 Conclusions

1) The results with different spectral functions (HO and NO) give quite sim-
ilar results (within 5–7%) for the CCQE cross sections, signaling that the
process is not too sensitive to the specific treatment of the bound state.

2) The FSI leads to an increase of about 2% using spectral functions with HO
and NO s.p. wave functions, almost independently of the neutrino energy.
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3) All approaches based on IA underestimate MiniBooNE data for the flux-
averaged CCQE (νµ(νµ) + 12C) differential cross sections and the total
cross section although the shape of the cross section is represented by
NO+FSI and HO+FSI approaches. For ν the agreement is much better.

4) All models give results that are compatible with the Minerνa and NOMAD
data. This points to the importance of the evaluation of non-impulsive con-
tributions, like those associated to MEC and their evolution with energy.
The 2p-2h contributions may be responsible for the observed discrepancy
in our analyses. Similar disagreement is observed for the phenomeno-
logical scaling function of SuSA, that is purely longitudinal QE response
and 2p-2h MEC should not contribute to it when properly extracted from
QE electron scattering, but could contribute to QE neutrino scattering
because of the axial current.
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[21] P.-O. Löwdin, Phys. Rev. 97 (1955) 1474.

149



M.V. Ivanov et al.

[22] M.V. Stoitsov, A.N. Antonov, and S.S. Dimitrova, Phys. Rev. C 48 (1993) 74.
[23] A.M. Ankowski and J.T. Sobczyk, Phys. Rev. C 77 (2008) 044311.
[24] Y. Horikawa, F. Lenz, and N.C. Mukhopadhyay, Phys. Rev. C 22 (1980) 1680.
[25] E.D. Cooper, S. Hama, B.C. Clark, and R.L. Mercer, Phys. Rev. C 47 (1993) 297.
[26] A.N. Antonov et al., Phys. Rev. C 74 (2006) 054603.
[27] W.M. Alberico et al., Phys. Rev. C 38 (1988) 1801.
[28] C. Andreopoulos (GENIE Collaboration), Acta Phys. Pol. B 40 (2009) 2461.
[29] T. Golan et al., Phys. Rev. C 86 (2012) 015505.
[30] Jesse Chvojka, Ph.D. Dissertation, University of Rochester (2012).

150




