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Abstract. In the present work a method is discussed for an explicit multivariate
gradient descent minimization of the energy density functional, which is suitable
for the description of ground states in atomic nuclei. The suggested formalism
ensures a fast convergence of the minimization process with a strict criterion for
arriving at the energy density functional’s minimum.

1 Introduction

Although simplistic, the treatment of the many-body problem by the mean field
ansatz has proven to be very successful. The mean field theory simplifies the
task of accounting for all nucleon interactions separately by introducing an av-
erage potential, but it still does not provide a reasonable method for extracting
physical information apart from solving the Schrdinger equation explicitly. This
defficiency can be resolved by using the Hartree-Fock method, which provides
an approach to finding an approximation for the quantum system wave function
and the corresponding energy simultaneously from a given two-body interac-
tion [1, 2].

It is well known that solving the exact Schrödinger equation

H|Ψ〉 = E|Ψ〉 (1)

is equivalent to solving the variational equation for the energy functional:

δE[Ψ] = 0 . (2)

However |Ψ〉 is not known explicitly, and instead an approximation is made
such that |Ψ〉 is restricted to a set of simple trial wave functions. In the Hartree-
Fock anzatz the solution of the Schrödinger equation is searched in terms of a
Slater determinant.

Ignoring relativistic effects, the Hamiltonian in some complete orthonormal
basis of single particle states can be written as

H =
∑
i,j

Tija
†
iaj +

1

2

∑
i,j,k,l

Vijkla
†
ia
†
jalak , (3)
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where a†i and ai are the creation and anihilation operators respectively for some
single particle state |i〉, T is the kinetic energy and V is a two body force.

Or rewriting the energy density functional in terms of the single particle
density matrix ρ:

E[ρ] = tr(ρT ) + Tr Tr(ρV ρ) , (4)

where ρ is defined as:

ρij = 〈Ψ|a†iaj |Ψ〉 . (5)

Then solving for

δE[ρ] = 0 (6)

would yield the desired solution.

2 Energy Density Functional Gradient Optimization

The gradient descent approach for solving the Hartree-Fock equations is known
and well described in the literature [3]. However it is cast in the context of
applying the variational principle for the Hartree-Fock Hamiltonian by taking the
respective Gateaux derivatives of the energy density functional and requiring the
variation of the total energy to vanish [2]. This approach, albeit perfectly valid,
requires the chosen single particle basis to be fixed in some known form before
proceeding with minimizing the total energy. In the current work an attempt is
made to show that this need not be the case.

2.1 The gradient descent

The gradient descent is an iterative algorithm for finding the minimum of a func-
tion. It is based on the observation that to reach a local minimum of a function
it is possible to take successive steps contrary to the direction and proportional
to its gradient or approximation thereof. The starting point for the method is
generally unimportant as long as it is in proximity of the searched extremum.

Given a multivariate function F (~r) that is defined and differentiable in the
neighborhood of the point ~r, then F (~r) decreases fastest in the direction of the
negative gradient at that point, namely ∇F (~r). So introducing a sufficiently
small scaling scalar parameter γ a sequence of points ~r0, ~r1, ~r3 . . . can be con-
structed in such a way that each successive approximation is closer to the mini-
mum of the function:

~rn+1 = ~rn − γn∇F (~r) , (7)

where the parameter γn is to be determined at each step, so that

F (~r0) ≥ F (~r1) ≥ F (~r3) ≥ . . . (8)
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2.2 The energy density functional as a multivariate function

In the usual treatment of the Hartree-Fock method the Hamiltonian is repre-
sented as a sum of the kinetic energy and a density dependent one-body operator
Γ, the self-consistent field [2]:

H = T + Γ , (9)

where Γ is defined as the contraction of the antisymmetrized two-body tensor Ṽ
with the single particle density matrix ρ:

Γik =
∑
jl

Ṽijklρlj . (10)

Whence the variational equation for the total energy is to be solved:

δE = E[ρ+ δρ]− E[ρ] =
∑
ij

Hijδρji = 0 . (11)

It is possible, however, instead of proceeding to calculate the density matrix
variation, to consider the matrix elements ρij as free variables and minimize the
total energy with respect to them.

The energy density functional for a general density dependent one-body
hamiltonian H[ρ] is writen as:

E[ρ] = tr(ρH[ρ]) . (12)

Then to minimize the total energy the gradient descent method for the denisty
matrix can be applied:

ρn+1 = ρn − γnεn , (13)

where n is the iteration step number and εn is the matrix representing the gradi-
ent of the energy functional with respect to the density matrix elements at that
step, or written as a matrix derivative:

εn =
∂

∂ρ
E[ρn] = HT [ρn] + tr

(
ρ
∂

∂ρ
H[ρn]

)
. (14)

The derivative of the Hamiltonian that appears in (14) can be evaluated numeri-
cally if analytical expression is not available.

2.3 Idempotency and number of particles

Asumming the iterations start from a density matrix which is idempotent and the
intial state has an exact, well defined, number of particles the iterative procedure
should keep those properties. To ensure this the idempotency condition can be
imposed explicitly:

ρ2
n+1 = ρn+1 , (15)
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or after substituting ρn+1 from (13):

ρ2
n − γn {ρn, εn}+ γ2

nε
2
n = ρn − γnεn . (16)

Taking into account that ρ2
n = ρn it follows that:

−γnεn = −γn {ρn, εn}+ γ2
nε

2
n , (17)

substituting (17) back into (13) yields for the iteration step:

ρn+1 = ρn − γn {ρn, εn}+ γ2
nε

2
n . (18)

Knowing the number of particles is given by the trace of the denisty matrix and
should be invariant through the process, that is tr (ρn+1) = tr (ρn)

tr (ρn+1) = tr (ρn)− γn tr ({ρn, εn}) + γ2
n tr

(
ε2
n

)
, (19)

an explicit expression for the scalar parameter γn can be obtained, dropping the
trivial case γn = 0:

γn =
tr ({ρn, εn})

tr (ε2
n)

. (20)

2.4 Convergence and properties

As with all variants of the gradient descent method convergence is guaranteed
for convex surfaces, whereas saddle points and nonconvex energy surfaces pose
a significant difficulty. It is slower to converge than higher order iterative ap-
proaches like Newton or quasi-Newton methods, bit tends to be more reliable
when the initial point is far from the searched extremum. The presented ap-
proach is expected, however, to be faster and more stable than searching for an
energy minimum by successive diagonalizations of the Hamiltonian.

3 Conclusion

The presented method is an alternative to the usual variational treatment of the
Hartree-Fock problem and shows a consideration of the minimization of the en-
ergy density functional by treating it as a multivariate function optimization. In
addition the actual minimization procedure is separated cleanly from the chosen
basis, as the only reagents for realizing the approach are the matrix elements of
the respective operators in said basis. Furthermore, no assumptions are made
about the structure of the Hamiltonian, thus there are no requirements about
specific symmetries being present. As this is a work in progress a complete
benchmark for speed and accuracy against established Hartree-Fock codes, like
HFODD and HFBTHO, is still needed.

Further development could include applying the same principles for prob-
lems with more basis functions, as it should be possible, in principle, to employ
the same anzatz for minimization of the energy density functional in more com-
plex bases, for example such that are needed as with the self-consistent Highly
truncated diagonalization approach. This would lift the need for dealing with
large-scale many-body Hamiltonian diagonalization [4].
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