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Abstract. In this work, we modify the Davydov-Chaban Hamiltonian describ-
ing the collective motion of a γ-rigid atomic nucleus by allowing the mass to
depend on nuclear deformation. Exact analytical expressions are derived for
energy spectra as well as normalized wave functions for Davidson potential.
The model, called Z(4)-DDMD (Deformation Dependent Mass with Davidson
potential), is achieved by using the Asymptotic Iteration Method (AIM). The nu-
merical calculations for energy spectra and B(E2) transition probabilities are
compared to the experimental data of 192−196Pt isotopes. The obtained results
show an overall agreement with the experiment and an important improvement
in respect to other models.

1 Introduction

The theoretical study of excited collective states in nuclei is of particular interest
to understand shape phase transitions in nuclei. Therefore, different approaches
have been developed in this context particularly in the framework of the Bohr-
Mottelson Model (BMM) [1, 2] and of the Interacting Boson Model (IBM) [3].
Moreover, a version of the Bohr Hamiltonian was proposed where the mass term
is allowed to depend on the β deformation variable [4–6]. The newly introduced
Deformation-Dependent Mass Formalism (DDMF) [7] offers a remedy to the
problematic behaviour of the moment of inertia in the Bohr Hamiltonian, where
it appears to increase proportionally to β2 [8]. Another direction of research
was to investigate such phenomena by imposing a γ-rigidity as in the case of
Z(4) [9] or X(3) [10]. These latter examples are obtained from the Davydov-
Chaban Hamiltonian [11] with an Infinite Square Well (ISW) potential for β
variable and with γ equals to π/6 and 0. Some improvements can be achieved
by including diverse potentials for describing β-vibrations [2, 12], for example,
the harmonic oscillator [13], the sextic potential [14–16], the quartic oscillator
potential [17]. Recently, for the first time this Hamiltonian has been used with
the minimal length formalism in nuclear structure [18–20].
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In the present work the attention is focused on the study of the quadrupole
collective states in γ-rigid case, by modifying Davydov-Chaban Hamiltonian in
the framework of DDMF [21,22] with Davidson potential [23] for β-vibrations.
The expressions for the energy levels as well as for the wave functions are ob-
tained in closed analytical form by means of the Asymptotic Iteration Method
(AIM) [24], an efficient technique that we have used to solve many similar prob-
lems [25–32].

The Z(4)-DDMD model will be introduced in Section 2. The exact separa-
tion of the Hamiltonian and solution of angular equation are achieved in Sec-
tion 3. The analytical expressions for the energy levels of Davidson potential
and the wave functions are given in Section 4. Finally, Section 5 is devoted to
the numerical calculations for energy spectra, B(E2) transition probabilities,
while Section 6 contains our conclusions.

2 The Z(4)-DDM Model

In the model of Davydov and Chaban [11], the nucleus is assumed to be γ rigid.
Therefore, the Hamiltonian depends on four variables (β, θi) and has the follow-
ing form [11]

H = − ~2

2B
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where B is the mass parameter, β the collective coordinate and γ a parameter,
while Qk are the components of the total angular momentum in the intrinsic
frame and θi the Euler angles.

In order to construct the Davydov-Chaban equation with a mass depending
on the deformation coordinate β, we follow the formalism described in Sec. II
of [4] and to consider,

B(β) =
B0

f(β)2
(2)

where B0 is a constant. Since the deformation function f(β) depends only on
the radial coordinate β, then only the β part of the resulting equation will be
affected. The resulting equation reads as,−√f
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where the reduced energies and potentials are defined as

ε =
B0

~2
E , v(β) =

B0

~2
V (β) ,

respectively.

3 Exactly Separable Form of the Davydov-Chaban Hamiltonian

Considering a total wave function of the form Ψ(β,Ω) = χ(β)φ(Ω), where Ω
denotes the rotation Euler angles (θ1, θ2, θ3), the separation of variables gives
two equations[
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− Λ

φ(Ω) = 0, (6)

where Λ is the eigenvalue for the equation of the angular part. In the case of
γ = π/6, the angular momentum term can be written as [33],

∑
k=1,2,3

Q2
k

sin2(γ − 2
3πk)

= 4(Q2
1 +Q2

2 +Q2
3)− 3Q2

1. (7)

Eq. (6) has been solved by Meyer-ter-Vehn [33], with the results

Λ = L(L+ 1)− 3

4
α2, (8)

φ(Ω) = φLµ,α(Ω) =

√
2L+ 1

16π2(1 + δα,0)

[
D(L)
µ,α(Ω) + (−1)LD(L)

µ,−α(Ω)
]
, (9)

where D(Ω) denotes Wigner functions of the Euler angles, L is the total angular
momentum quantum number, µ and α are the quantum numbers of the projec-
tions of angular momentum on the laboratory fixed z-axis and the body-fixed
x′-axis, respectively. In the literature, for the triaxial shapes, it is customary to
insert the wobbling quantum number nw instead of α, with nw = L − α [33].
Within this convention, the eigenvalues of the angular part become

Λ = L(L+ 1)− 3

4
(L− nw)2. (10)
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4 Z(4)-DDM Solution for βββ Part of the Hamiltonian

The β-vibrational states of the triaxial nuclei, having a γ rigidity of π/6, are
determined by the solution of the radial Schrödinger equation

1
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Setting the standard transformation of the radial wave function as χ(β) =
β−3/2R(β), we get

f2R′′ + 2ff ′R′ + (2ε− 2ueff)R = 0 (13)

with
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Now, we consider the special case of the Davidson potential [23]

v(β) = β2 +
β4

0

β2
, (15)

where β0 represents the position of the minimum of the potential.
According to the specific form of the potential (15), we choose the deforma-

tion function in the following special form

f(β) = 1 + aβ2, a� 1. (16)

By inserting the potential and the deformation function in Eq. (13), one gets
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In order to apply the asymptotic iteration method [24], we propose an appropri-
ate physical wave function in the form

RnβL(y) = yρ(1 + ay)νFnβL(y), y = β2, (19)

with
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4
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(20)

For this form, the radial wave equation reads
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We get the generalized formula of the radial energy spectrum,
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where nβ is the principal quantum number of β vibrations, with
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The excited-state wave functions read,
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The quantities k2, k0, k−2 are given by Eq. (18), while Λ is the eigenvalue
of angular part given by Eq. (10). The excitation energies depend on three
quantum numbers: nβ , nw and L, and four parameters: a the deformation mass
parameter, β0 the minimum of the potential, the free parameters δ and λ coming
from the construction procedure of the kinetic energy term [34]. In the last part
of the paper, a comparison to the experiment will be carried out by fitting the
theoretical spectra to the experimental data. Finally, it will be shown that the
predicted energy levels turn out to be independent of the choice made for δ and
λ.
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5 Numerical Results

The Z(4)-DDM model presented in the previous sections has been applied for
calculating the energies of the collective states and the reduced E2 transition
probabilities for 192,194,196Pt isotopes. All bands (i.e. ground state, β and γ) are
characterized by the following quantum numbers

• For gsb: nβ = 0 and nw = 0;

• For β band: nβ = 1 and nw = 0;

• For γ band: nβ = 0 and nw = 2 for even L levels and nβ = 0 and nw = 1
for odd L levels.

In this work the theoretical predictions for the levels, Eq. (22), depend-
ing on two parameters, namely: the potential minimum β0 and the deformation
dependent mass parameter a. These parameters are adjusted to reproduce the
experimental data by applying a least-squares fitting procedure for each consid-
ered isotope. We evaluate the root mean square (rms) deviation between the
theoretical values and the experimental data via the formula

σ =

√∑N
i=1(Ei(Exp)− Ei(th))2

(N − 1)E(2+
g )

. (26)

This quantity represents the rms deviations of the theoretical calculations
from the experiment, where N denotes the number of states, while Ei(exp)
and Ei(th) represent the theoretical and experimental energies of the i-th level,
respectively. E(2+

g ) is the energy of the first excited level of the ground state
band (gsb).

From Table (1), one can see that the obtained results for the levels belonging
to gsb, β and γ band are in quite satisfactory agreement with experimental data.
Analyzing the mean deviation corresponding for each nucleus, we can see that
the present results are fairly better that those obtained by Z(4)-sextic model. This
is explained by the fact that here the mass parameter depends on the β variable,
while in Refs. [14, 15] the mass is considered as a constant.

Similarly, we have calculated the intraband and interband B(E2) transition
rates, normalized to the transition from the first excited level of the ground state
band (gsb) to the ground state, using the same optimal values of the three pa-
rameters obtained from fitting the energy ratios. From the obtained theoretical
results shown in Table (2), one can remark some discrepancies within the ground
state band of the higher L levels, while the experimental values show a decreas-
ing trend. For the intra-band transition from the γ band to the gsb, both models
give good results, while for transition from the β band to the gsb, the agreement
is only partially good.

191



P. Buganu, M. Chabab, A. El Batoul, A. Lahbas, M. Oulne

Table 1. The energy spectra comprising the ground, γ and β bands obtained with our
models Z(4)-DDM Davidson (D) are compared with the values taken from Ref. [14] and
Ref. [15] with the available experimental data [35–37].

192Pt 194Pt 196Pt
Exp D [14] [15] Exp D [14] [15] Exp D [14] [15]

R0,0,4 2.479 2.374 2.439 2.396 2.470 2.445 2.415 2.406 2.465 2.362 2.513 2.481
R0,0,6 4.314 3.960 3.787 3.834 4.298 4.202 3.835 3.902 4.290 3.968 3.709 3.701
R0,0,8 6.377 5.674 5.773 5.761 6.392 6.201 5.880 5.896 6.333 5.770 5.579 5.559
R0,0,10 8.624 7.473 7.350 7.484 8.672 8.408 7.573 7.713 8.558 7.752 6.914 6.932

R1,0,0 3.776 3.714 3.397 3.537 3.858 3.666 3.706 3.809 3.192 2.970 2.954 2.977
R1,0,2 4.547 4.726 4.995 5.162 4.603 4.730 5.409 5.493 3.828 4.047 4.308 4.364
R1,0,4 6.118 7.002 7.113 7.511 6.265 7.490 5.511 6.238 6.280

R0,2,2 1.935 1.857 1.653 1.664 1.894 1.892 1.661 1.676 1.936 1.848 1.646 1.643
R0,1,3 2.910 2.620 2.302 2.345 2.809 2.711 2.332 2.378 2.852 2.608 2.249 2.252
R0,2,4 3.795 4.366 4.229 4.200 3.743 4.667 4.268 4.273 3.636 4.388 4.179 4.150
R0,1,5 4.682 4.563 4.342 4.360 4.563 4.894 4.402 4.446 4.526 4.593 4.243 4.227
R0,2,6 5.905 6.686 6.358 6.466 7.430 6.524 6.645 5.644 6.874 6.041 6.049
R0,1,7 6.677 6.523 6.065 6.215 7.230 6.235 6.392 6.694 5.737 5.754
R0,2,8 8.186 8.925 9.163 9.203 10.269 — 9.508 7.730 9.424 8.564 8.573

σ 0.526 0.614 0.593 0.338 0.543 0.515 0.550 0.682 0.683
a 0.002 0.058 0.122
β0 1.32 1.31 1.14

Table 2. The comparison of experimental data [35–37] (upper line) for severalB(E2) ra-
tios of nuclei to predictions by the Davydov-Chaban Hamiltonian with β-dependent mass
for the Davidson potential (lower line), using the parameter values shown in Table (1).

nuleus
4g→2g

2g→0g

6g→4g

2g→0g

8g→6g

2g→0g

10g→8g

2g→0g

2γ→2g

21→0g

2γ→0g

2g→0g

0β→2g

2g→0g

2β→0g

2g→0g
×103 ×103

192Pt 1.56(12) 1.23(55) 1.91(16) 9.5(9)
1.60 2.34 3.02 3.69 1.63 0.0 0.80 15.12

194Pt 1.73(13) 1.36(45) 1.02(30) 0.69 1.81(25) 5.9(9) 0.01
1.60 2.34 3.01 3.65 1.62 0.0 1.15 52.33

196Pt 1.48(3) 1.80(23) 1.92(23) 0.4 0.07(4) 0.06(6)
1.68 2.54 3.33 4.10 1.70 0.0 1.46 45.70

6 Conclusion

A new solution for the Davydov-Chaban Hamiltonian within the DDM for David-
son potential is proposed, called Z(4)-DDM Davidson. From the mathemati-
cal point of view: this work is achieved through the use of Asymptotic Iter-
ation Method AIM to derive exact analytical expressions for the spectra and
wave functions. From the physics point of view : the numerical realization of
this model consisted of calculating energy spectra and transition probabilities of
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192,194,196Pt isotopes using Davidson, as collective potential, that we compare
to experimental data and confront with other models calculations. Experimental
intraband and interband transitions rates are slightly underestimated.
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