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Abstract. We discuss modeling of nuclear structure beyond the 2-body interac-
tion paradigm. Our first example is related to the need of three nucleon contact
interaction terms suggested by chiral perturbation theory. The relationship of
the two low-energy effective coupling parameters for the relevant three nucleon
contact interaction terms cD and cE that reproduce the binding energy of 3H and
3He has been emphasized and the physically relevant parameter region has been
illustrated using the binding energy of 4He. Further justification of A-body in-
teraction terms is outlined based on the Okubo-Lee-Suzuki effective interaction
method used in solving the nuclear many-body problem within a finite model
space. The third example we use is an exactly solvable A-body extended paring
interaction applied to heavy nuclei with a long isotopic chains; in particular us-
ing 132Sn and 208Pb as closed core system illustrates a remarkable relationship
between the extended pairing strength G(A) and the size of the valence space
dim(A) for the members of these two isotope chain: G(A) = α dim(A)−β

with α = 259.436 for Sn and α = 366.77 for Pb while the parameter β is prac-
tically 1. These three cases present evidence for the need of better understanding
of the three-nucleon (NNN), four-nucleon (NNNN), and A-body interactions in
nuclei either derived from ChPT or from a phenomenological considerations.

1 Introduction

The high precision, QCD derived, nucleon interaction that describes the NN-
scattering phase shifts and the deuteron, when applied to the light s- and p-
shell nuclei points to the necessity of NNN-interaction terms [1, 2]. Thus, the
conventional two-body interaction paradigm is challenged and the need of 3-
body and possibly A-body interaction define a new research frontier. The struc-
ture of the three-body terms has been studied previously using the meson ex-
change theory [3]. However, with the advance of the Chiral Perturbation Theory
(ChPT) [4, 5] the structure of the three-body interaction has been clearly identi-
fied and well justified via QCD.

Higher many-body interaction terms (e.g. NNNN-interaction terms) are also
part of the interaction as derived from QCD via ChPT [6]. The Okubo-Lee-
Suzuki (OLS) effective interaction method, employed in solving the nuclear
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many-body theory, also introduces interaction terms beyond the common 2-body
interaction [7, 8]. All this seems to be pointing to the need of A-body interac-
tions for the description of the nuclear structure. It also raises the question about
the importance of the A-body interactions in very heavy nuclei. Fortunately,
there is an exactly solvable A-body model - the extended pairing model - that is
applicable as an A-body interaction to very heavy nuclei; therefore, it can help
to address this question [9–11].

In the next section we briefly discuss the microscopic nuclear physics hamil-
tonian; the types of the high-precision NN-interaction potentials and their failure
to properly account for the structure of the nuclei with more than two nucleons.
In Sec. 3 we discuss the values of the cD and cE parameters of the NNN-
intercation [2] and their physically acceptable regions as deduced from the bind-
ing energy of 3H, 3He, and 4He. In Sec. 4 we further extend our argument for
A-body nuclear interactions by using the modern OLS effective interaction in
finite model space method. In Sec. 5 we briefly discuss the results of applying
the A-body Extended Pairing Interaction (EPI) to few long isotope chains like
Sn and Pb nuclei. Last section is our conclusion about the needs of the future
nuclear structure modeling based on A-body nuclear interactions.

2 Modeling the Nuclear Interactions

Unlike the electromagnetic and the gravitational interaction, the mathematical
form of the nuclear interaction has been very elusive. This is due to the fact that
the nuclear interaction arises non-trivially from the quark structure of the nucle-
ons and thus related to the theory of the QCD. Never the less, the field of nuclear
structure modeling has advanced significantly, based on general quantum me-
chanical principals and techniques. In particular, the microscopic approach has
been very successful especially with the advance of computational techniques
and computer power that have allowed for the construction of effective high-
precision meson and/or QCD derived NN-potentials. The free parameters of the
high-precision NN-potentials are usually fixed by the experimental two-nucleon
scattering data and describe the 2-body system extremely well [12]. Unfortu-
nately, these potentials produce unsatisfactory description of the 3- and 4-body
systems [13].

A nuclear many-body system near equilibrium can be viewed as subject to
a mean-field Harmonic Oscillator (HO) potential. It is well-known that one can
understand the magic numbers and the shell structure of nuclei within the 3-
dimensional HO approximation plus a spin-orbit potential [14]. Using the HO
single-particle states one can write a general Hamiltonian with one- and two-
body terms. Despite the significant symmetry relations, due to rotational sym-
metry and due to the fermion exchange properties and the hermition requirement
on the energy operator, the number of independent phenomenological parame-
ters is often more than a dozen - usually it is of order of few hundred for the
valence NN interaction alone. The independent parameters of the interaction are
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often fitted to experimental data by starting with some initial values that come
from a relevant theory or model.

Many of the high-precision NN-potentials, commonly used to build the mi-
croscopic interactions for multi-nucleon systems, have very complicated but me-
thodically developed structure in terms of spin, iso-spin, and angular momentum
components although sometimes there is a very complicated radial dependence.
For example, the Argonne V18 potential has 18 different terms [15]. Other po-
tentials use non-local terms like CD-Bonn [16] and Nijmegen [17]. However,
when applied to A>2 systems all of these potentials have a serious difficulties
that were eventually overcome by using three-body interactions [4, 13, 18].

By the end of the twentieth century it become clear that a two-body inter-
action by itself is inadequate - even for the description of the lightest nuclei
2 < A < 5. Comparative studies of various potentials, such as AV18, Nijmegen,
CD-Bonn, and N3LO, with or without three body terms have demonstrated the
inadequacy of the pure two-body interactions and the need for three-body in-
teraction terms [12, 13]. For example, all these interactions (AV18, Nijmegen,
CD-Bonn, and N3LO) describe very well the deuteron properties such as bind-
ing energy, radius, and quadruple moment but fail by more than 0.5 MeV to
reproduce the binding energy of triton [12] and underbind 4He by more than 4
MeV [13].

Although the meson-exchange approach was successful, it was clear that this
phenomenological models should be derived from the underling QCD. Thus the
ChPT approach became a prominent technique that produced the high-precision
NN-potential N3LO and then guided the researchers into the structure of the
NNN- and NNNN-interactions [6, 12, 19].

3 The NNN-body Interaction

The use of the ChPT in the derivation of the nucleon interactions from QCD
helped in identifying the mathematical form of various interaction terms along
with the relevant parameters. Unfortunately, parameters related to contact terms
in the interaction could not be determined. Thus, the strengths, cD and cE , of
the two-nucleon contact interaction with one-pion exchange to a third nucleon
and the three-nucleon contact interaction are identified as undetermined param-
eters in the effective ChPT interaction [1]. As such they need to be fixed by
comparison with experiment.

The values of the parameters cD and cE that reproduce the binding energy of
3H and 3He within 0.5 keV of the experimental values correspond to two non-
intersecting curves in the cD and cE plain as seen from Figure 1. In order to
further narrow down the range of cD values one considers the averaged cD− cE
curve and evaluates the binding energy of the 4He system that results in two
possible physical regions denoted by A and B; where region A corresponds to
cD of order 1 and region B for cD of order 10. Finally, the charge radius of 4He
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Figure 1. Relations between cD and cE for which the binding energy of 3H (8.482 MeV)
and 3He (7.718 MeV) are reproduced. (a) 4He ground-state energy along the averaged
cD − cE curve. The experimental 4He binding energy (28.296 MeV) is reproduced to
within 0.5 MeV over the entire range depicted. (b) 4He charge radius rc along the
averaged cD−cE curve. Dotted lines represent the rc uncertainty due to the uncertainties
in the proton charge radius.

points to the region A as the reasonable range of values for the cD parameter
while the cE parameter is determined by the averaged cD − cE curve [2].

Conceptually, there are three important concerns: First, the ChPT NN-potential
was one order higher than the NNN-potential and no NNNN-potential was in-
cluded. That is, the high-precision NN-potential was N3LO (next-to-next-to-
next-to-leading order) [12] while the ChPT NNN-potential was at the N2LO or-
der [19] and the NNNN-potential [6] was not yet readily available. The second
concern is that the range of the 3-body interaction parameter cD is determined
by the properties of the 4-body system 4He; this, however, was resolved by a
later study that used the β− decay of 3H into 3He and confirmed the physically
relevant region A for the parameter cD [20]. The third concern is related to the
fact that these are high-precision studies and at this level of accuracy the dif-
ference between the proton and nucleon mass could be important for the A=3
systems [21].

4 Effective A-Body Interactions

In the previous section we discussed results obtained by using QCD derived
interactions and the role of the NNN-interaction in the description of the light
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nuclei. Clearly 3- and 4-body interaction terms are predictions of the ChPT.
Thus A-body interactions can be viewed as real physical interactions within the
ChPT approach to nuclei. However, there is another way to arrive at A-body
interactions that are phenomenological effective interactions since they are re-
lated to our inability to handle interacting systems in infinite Hilbert spaces [22].
Since the quality of a model is judged by its ability to reproduce the experimen-
tal data, as far as computational models are concerned, an A-body interaction
which gives results that agree well with the experimental data is also a physi-
cally relevant interaction.

In practice, we are computationally limited to a finite subspace of the infinite
Hilbert space of the full quantum many-body problem. The subspace that we can
access is defined by finite set of computationally convenient many-body basis
states. For a suitable choice of basis we hope to have good overlaps with low-
lying physical states of the system under study. If we imagine the exact solutions
are available for analysis and apply a unitary transformation to those eigenstates,
we can produce a transformed set of solutions maximally overlapping with our
chosen basis space.

For example, one may be interested in the lowest two energy states of a sys-
tem, but would like to have some unitarily transformed version of these states
that have maximal overlap with the two basis states that define a 2D computa-
tional space as shown in Figure 2. By finding the relevant unitary transformation
U, one can define an effective Hamiltonian that would have the lowest two states
within the 2D space as desired. Then this effective Hamiltonian could be used in
the calculations of more complicated multi-particle systems, i.e. one would find
the unitarily transformed Hamiltonian that describes very well the low-energy
states of a 2-body system in a mean field but within a Fock space that would
be used later for an A-body system. Unfortunately, this transformation will turn
any one- and two-body potential into a many-body effective interaction when
applied to the relevant many-body system [22].

H U=eiS

Heff=UHU
-1

Figure 2. Geometrical interpretation of the Okubo-Lee-Suzuki transformation method
for construction of effective Hamiltonian operators.
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For A>4, it seems impractical at present to obtain the structure of the A-
body interactions as derived from ChPT as it was previously done for the NNN-
and the NNNN-interaction terms. Before embarking on the extensive undertak-
ing required for including higher-body effective interactions, it would be very
helpful to investigate a simple exactly solvable A-body interaction model that
has few parameters and is applicable to real A-body systems.

5 The Sn and Pb Isotopes

At present, it seems impossible to be able to obtain the structure of the A-body
interactions from ChPT for A>4. Therefore, in order to determine the relevance
of the A-body interactions one should use the general form of an A-body inter-
action and then to try to determine some of the A-body interaction strengths. For
this reason, one needs simple exactly solvable A-body interaction with few pa-
rameters that can be adjusted to the experimental data. Fortunately, there is such
an interaction - the Extended Pairing Interaction (EPI) [9]. This exactly solvable
model is similar to the two-body proton-neutron pairing which was shown to be
exactly solvable as well [23].

Deformation is common in very heavy nuclei and this often justifies the suc-
cess and application of the Nilsson model. Due to the space limitations many
details and results of the current application of this exactly solvable Extended
Pairing model are omitted, however, a more detailed paper is available [10]. For
the current application of the exactly solvable EPI model the single-particle en-
ergies are calculated using the Nilsson deformed shell model with parameters
from [24]. Experimental Binding Energies (BE) are taken from [25]. Theoreti-
cal Relative Binding Energies (RBE) are calculated relative to a specific nuclear
system, 132Sn and 208Pb, for the cases considered. The RBE of the nucleus next
to the core is used to determine an energy scale for the Nilsson single-particle
energies. For an even number of neutrons, we considered only pairs of particles
(hard bosons). For an odd number of neutrons, we apply Pauli blocking to the
Fermi level of the last unpaired fermion and considered the remaining fermions
as if they were an even fermion system. The valence model space consists of
the neutron single-particle levels between two closed shells with magic numbers
50-82 and 82-126. By using the exact solvability of the model, values of G are
determined so that the experimental and theoretical RBE match exactly as seen
in Figure 3 and Figure 4. The results are discussed in more details in Ref. [10]
and Ref. [11].

Figure 3 shows results for the 181−202Pb isotopes. The RBEs are relative
to 208Pb which is set to zero, and the core nucleus is chosen to be 164Pb. Thus
this calculations for the Pb-isotopes have a core nucleus 164Pb with a negative
binding energy since the zero binding energy reference nucleus is set to be at
208Pb. One can see from Figure 3 that a quadratic fit to ln(G) as function of A
fits the data well. The fact that there is a correlation between the pairing strength
G and the size of the model space, reflected in the minimum of G that is at
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Figure 3. The solid line gives the theoretical RBE for the Pb isotopes relative to the 208Pb
nucleus. The insets show the fit to the values ofG that reproduce exactly the experimental
data using 164Pb core for the shell model. The lower inset shows the two fitting functions:
log(G(A)) = 382.3502−4.1375A+0.0111A2 for even values ofA and log(G(A)) =
391.6113 − 4.2374A + 0.0114A2 for odd values of A. The upper inset shows a fit to
G(A) that is inversely proportional to the size of the model space, (dim(A)), that is valid
not only for for even but also for odd values of A: G(A) = 366.7702 dim(A)−0.9972.
The Nilsson BE energy is the lowest energy of the non-interacting system.

the maximal model space dimension, prompted us to study G(A) as function of
the model space dimension dim(A). In this case the pairing strength G(A) for
all the 21 nuclei (A=181 − 202) was fit by a two parameter function G(A) =
α/[dim(A)]β with the values of the parameters taken to be α = 366.7702 and
β = 0.9972. Similar results have been obtained for the Sn-isotopes as well by
using 132Sn as zero RBE system (see Figure 4).

The Sn isotope chain is unique in the sense that there are two doubly magic
members, the 100Sn and 132Sn. This allows us to use 132Sn as zero RBE system
with holes as it has been done for the Pb case [11]. Again, there is a sim-
ple expression that works for even and odd systems simultaneously: G(A) =
α dim(A)−β ; with α = 259.436 and β = 0.9985 for 132Sn as reference RBE
system. Having a one parameter expression ( one practically has β = 1) for the
extended pairing strength in such long chains of isotopes (∼ 20 nuclei in the
chain) is remarkable!
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Figure 4. The solid blue line gives the theoretical RBE for the Sn isotopes relative to
the 132Sn nucleus. The insets show the fit to the values of G that reproduce exactly
the experimental data using 132Sn core. The lower inset shows the two second order
polynomial fitting ln(G(A)) = 365.0584 − 6.4836A + 0.0284A2 for even values of
A and ln(G(A)) = 398.2277 − 7.0349A + 0.0307A2 for odd values of A. The upper
inset shows a fit to G(A) that is inversely proportional to the size of the model space,
(dim(A)), that is valid for even as well as odd values of A: G(A) = α dim(A)−β with
α = 259.436 and β = 0.9985. The Nilsson BE energy is the lowest energy of the
non-interacting system.

In the light of the above, it seems that the next step should be a study that
tracks the results as a function of the increasing size of the model space to con-
firm or refute the log− log relation. Such a study could also address other ques-
tions such as the effect of the core binding energy as a function of the deforma-
tion that is used in the Nilsson model to derive the single-particle energies. Us-
ing a Woods-Saxon potential or other methods to generate more realistic single-
particle energies is another opportunity for further studies.

6 Conclusion

In conclusion, we studied relative binding energies of nuclei in two isotopic
chains, 100−130Sn and 181−202Pb, using the A-body Extended Pairing Interac-
tion [9] by using Nilsson single-particle energies as the input mean-field ener-
gies. Overall, the results suggest that the model is applicable to neighboring
heavy nuclei and provides, within a pure shell-model approach, an alternative
mean of calculating relative binding energies. In order to achieve that, the pair-
ing strength is allowed to change as a smooth function of the model space di-
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mension. It is important to understand that the A-dependence of G is indirect,
since G only depends on the model space dimension, which by itself is different
for different nuclei. In particular, in all the cases studied ln(G) has a smooth
quadratic behavior for even and odd A with a minimum in the middle of the
model space where the dimensionality of the space is a maximal; ln(G) for even
A and odd A are very similar which suggests that further detailed analyses may
result in the same functional form for even A and odd A isotopes as found in
the case of the Pb-isotopes and Sn-isotopes. It is a non-trivial result that G is
inversely proportional to the space dimension dim in the two cases found (Pb-
isotopes and Sn-isotopes) which requires further studies.

In this paper we have presented evidence for the need to better understand-
ing of the NNN-, NNNN-, and A-body interactions in nuclei either derived
from ChPT or from a phenomenological considerations. Therefore, one has
to build A-body computational technology in the next generations of nuclear
modeling codes.While the motivation for considering A-body interaction in the
light-nuclei is strong as based on the ChPT QCD derived interactions, one is left
to wonder if A-body interactions are also relevant to heavy nuclei. The results
obtained with the help of the Extended Pairing Interaction, in particular the Sn
and Pb isotopes discussed here seem to confirm the idea that A-body interactions
are needed to understand better the binding energy of heavy nuclei. Often the
imagination cannot capture all the possible implications and uses of an exactly
solvable model. Beside the current applications of the Extended Pairing Inter-
action, one can also see that it would be a useful verification tool for A-body
computational codes as well.
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