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Abstract. New effective method for solving of the system of hyperradial equa-
tions is proposed and testing for 3-body oscillator system and 3H, *:°He nuclei.
The energy of the ground states of 3H, 345He, OLi, °Be, '2C, 90 nuclei were
calculated by Feynman’s continual integrals method in Euclidean time. The nu-
clei 3H, 3*He were considered as consisting of protons and neutrons, whereas
the nuclei ®He, °Li, °Be, 2C, '°0 were considered as o-cluster nuclei. The
agreement with the experimental data on binding energies was achieved us-
ing the effective nucleon-nucleon interaction potentials similar to the M3Y po-
tential. The superpositions of the Woods-Saxon type functions were used as
nucleon-a-cluster and a-cluster-a-cluster potentials.

1 Introduction

For description of experimental data on reactions with light nuclei we need ac-
curate theoretical models and methods of calculation of ground states of these
nuclei. It is desirable to have two (or more) complementary methods. There are
two general approaches to quantum mechanics [1]. The first, and the main one is
based on the Schrodinger equation [1]. For few-body systems it may be solved
by expansion of the wave function into a system of functions, for example, into
hyperspherical harmonics [2]. The Hyperspherical Harmonics Method (HHM)
was used for calculations of nuclei 3H [3], “He [4], °He [5], °He and '2C [6],
9Be [7]. In Ref. [8] the wave function of the three-body system was obtained
using Gaussian basis and the numerical solution of the Hill-Wheeler integral
equations. The Gaussian Expansion Method for few-body systems was used in
Ref. [9] for calculation of the 3*He ground states. The spline approximation for
solving of hyperradial equations for 3-body system is introduced in the HHM
approach in Section 2. This modified method (HHMS) is tested for harmonic
oscillator model with two sets of parameters.

The second general approach to quantum mechanics is based on Feynman’s
Continual Integrals (FCI) [1, 10, 11]. The FCI method was used for studying
ground states of several light nuclei in Refs. [12, 13]. It is important that the
FCI method may be implemented using parallel computing technologies [14].
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The FCI method is tested for three- and four-body harmonic oscillator models
in Section 3. Convergence of the complementary methods, HHMS and FCI, for
effective nucleon-nucleon interaction is shown in Section 4. For nuclei, which
may be represented as three- and four-body system, energies of ground state
were also calculated in Section 4. The example of the probability density for
ground state of “Be in the 3-body model is shown in the Section 5.

2 Hyperspherical Harmonics Method with Spline Approximation

The basics of HHM for 3-body system [2] are described below. The “normal-
ized” Jacobi coordinates (x;,y;) are

[ mymyg
X; = j s 1
mj + my (rj I‘k) ( )

m;(m; + my) N m;r; + miry
mi + mo + ms ! m; + my ’

yi= ()

where r; and m; are radius vectors and masses of particles, respectively. The hy-
perspherical coordinates are Q = {6, ¢y, 0y, ¢y, o}, © = pcosa, y = psina,
p is the hyperradius. The hyperspherical harmonics (functions) are
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(Iz,ly,mg,my,|LM) are the Clebsch-Gordon coefficients, Y7, 1, (£), Y1, m, (7).
are spherical harmonics. The orbital angular momentum for ground state equals
zero, L = 0, therefore I, = [, and

gz (@) = Niz' (cos @)’ (sin )= Pl 1/2 b 4172 (cos 20), )

Prlf’H/Q’ l’+1/2(t) are the Jacobi polynomials, K = 2n + 2I,, is hypermoment,

n = 0,1,2.... Expansion into hyperspherical functions of the ground state
wave function ¥ for L = 0 is
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where 6 is the angle between the Jacobi vectors. The main problem is the solu-
tion of the system of hyperradial equations

0, 2 (K+3/2)(K+5/2)] .0,
p? —— Rt (p)+ |:hg‘€ - 2 eiq (p)
e lT,lrl; e,
UK K00 P)@K/o(/’) (8)

Kl

with coupling matrix of the potential energy U = Vi5 + Vi3 + Vags:
Ul (p) = (1,1 KOU 1,1, K"0). ©

There are several laborious methods of solving hyperradial equations: power
expansion [15], artificial hyperradial basis [16, 17], basis of Lagrange functions

[6].
2.1 Solution of System of Hyperradial Equations Using Splines

New method of solving hyperradial equations using cubic spline approximation
is proposed. The idea of this method is simultaneous calculation of the mesh
function ¢; and its second derivative m;. The cubic spline interpolation expres-
sion [18]

Lol [y — (pi — p)? (p—pi-1)?
SOKO (p) = golx,n(p) = mlgmn,i—lThi + mlm’n’iT
mlm,n,z’—lh?) pi—p
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+ (%, : 6 I, (10)
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for function ¢y, ,,(p) may be written with its values ¢y, , ; and values of its
second derivative m;, , ; in the points of mesh. This modified method (HHMS)
has some advantages. The main one is the smooth interpolation between mesh
points with natural boundary conditions

my, o =My, nN =0. (11)

The hyperradial equations on the mesh are

1
—A ' Hogr + — p (K+3/2)(K+5/2)90KL+<PKL/(/%)52U «(p)
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+ Z @K'L'(Pz)ﬁ Ukl (p) = ﬁE@KL' (12)
K'#K,L'#L
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The matrix A was determined in Ref. [18]. The system (12) represents the eigen-
value problem B® = A®. Energies are eigenvalues of matrix B and wave func-
tions are eigenvectors of matrix B [19]. The other advantage of HHMS is a small
size of the matrix for a special choice of the non-uniform mesh and fast calcula-
tions, but only for the ground state. A disadvantage of HHMS in the general case
of an arbitrary mesh is that matrix B is unsymmetric. For the equidistant mesh,
B is symmetric, and the method may be used for calculation of both ground and
exited states, but a disadvantage is that matrix B has a large size.

2.2 Exactly solvable harmonic oscillator systems

For verification testing HHMS approach we used 3-body harmonic oscillator
system. Three particles with masses m; = ms = m,mg = oo interact with
each other by oscillator potentials:

Vij (r) = —=2r%. (13)

The frequencies of the normal modes are equal to 21,25 and energy of the
ground state is

Eo= thg + hQQ%. (14)

In the case of wo3 = Wy,

01 = /wiy + 2wiy, Qo = wys. (15)

Two sets of parameters were used in calculations. In the case of

Wip = Wpg = w3 = 1, (16)
M =vV1i+2=v3Q,=1. (17)
In the system of units with & = 1 energy of the ground state is
3
Eo =% (1 n \/ﬁ) — 4.098, (18)

and Ey = 4.306 in the case of

1
ﬁ;wm

HHMS calculations were performed for p,,q. = 5,Ap = 0.05, Kpee = 8.
Exact values were obtained and the relative errors were not greater than 0.3%.
In both cases HHMS leads to fast convergence to exact values of the ground state
energy.

Wiy = \/§;w23 = =1. (19)
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3 Feynman’s Continual Integrals in Euclidean Time

Feynman’s continual integral [1, 10] is a propagator - the probability amplitude
for a particle to travel from one point (qy) to another (q) in a given time ¢

K(g.t:0,0) = [ Dalt)exp {;swn} = (afesp (3 #11) ). 0)

Here S[q(t)] and H are, respectively, the action and the Hamiltonian of the sys-
tem, and Dq(t) is the integration measure [20]. For a time-independent potential
energy a transition to the imaginary (Euclidean) time ¢ = —i7 yields the propa-
gator Kg(q, 7; o, 0) with the asymptotic behavior

Eot
K (4,7300) > [o(g)  exp (=27 ) .7 = o0 e

or
hln Kg (q,T;q,O)*)h|\Po(q)|2onT,T*>OO. (22)

Equation (22) can be used to obtain the energy FE, as the slope of the linear
part of the graph representing In K (g, 7; ¢,0) as a function of 7. The squared
modulus of the ground-state wave function, |¥o(q)|? in the points ¢ of the fi-
nite region corresponding to finite motion can be determined based on expres-
sion (21) at 7 values in the linear part of the graph representing the dependence
In Kg(q,7;4,0).

The propagatorK (¢, 7; qo, 0) can be represented as the limit of a multiple
integral [1, 10, 11]

. m N/2
Kg(qo:75q0,0) = lim ( )

NZoo 2wrhAT
N
X/.../exp iy ["W +V (ar) A7| tdgrdas. . dan 1.
h = 2AT

(23)
3.1 Calculation of Feynman’s continual integrals by Monte-Carlo method

The values of the propagator Kg(q, 7;¢0,0) were calculated using averaging
over random trajectories with the distribution in the form of the multidimen-
sional Gaussian distribution [12, 14]

Kilao.7i00.0) ~ (5o )" (exp [ 57 S Vig]), e
k=1
1 n
<F>%5;Fi. (25)

Parallel calculations by Monte Carlo method [21] using NVIDIA CUDA [22]
technology were performed on the Heterogeneous Cluster of LIT, JINR [23].
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3.2 Exactly solvable harmonic oscillator systems

The verification testing of the FCI method for 3-dimensional harmonic oscilla-
tor which is equivalent to 2-body system was made in Ref. [12]. In addition,
for verification testing of the FCI method we used 3-body harmonic oscillator
system (13)-(15). The FCI method with Monte-Carlo statistics n = 7 X 107
reproduces the exact result £y = 4.117 & 0.006 for the system with parameter
values (16)-(18) and Ey = 4.36 £ 0.03 for the system with parameter values
(19).

For extended verification testing of the FCI method we used 4-body har-
monic oscillator system. Four particles with masses m; = mgo = mg =my =1
interact with each other by oscillator potentials (13). The expression for total po-
tential energy in terms of “normalized” Jacobi coordinates (X,y, z) is

1
V=-U+ (2w)? (22 + ¥ + 2?) (26)
and the energy of the ground state forw =1, h =1 is
Ey=-Uy+9. (27)

The FCI method with Monte-Carlo statistics n = 7 x 107 reproduces the
exact results with a satisfactory uncertainty: £y = 9.05 &+ 0.1 for Uy = 0 and
Ey = —5.98 £ 0.02 for Uy = 15. The FCI method leads to fast convergence to
exact values of the ground state energy.

4 Energy of Ground State for Three and Four Body Nuclei

4.1 Exactly Solvable Nuclear Systems

For verification testing of the FCI method for nuclear interactions we used 3-
body system of the particles with masses m; = mg3 = mg, mg = 0o, where
my 1s the mass of a nucleon. The light particles 1, 3 interact only with in-
finitely heavy particle 2 by nucleon-nucleon potential having repulsive core. The
nucleon-nucleon interaction potentials similar to the M3Y potential (e.g., [24])
was used

3
Via(r) = Vas(r) = Zuk exp (—r°/b7). (28)
k=1

The radial Schrodinger equation was solved “exactly” by difference scheme for
2-body system of particles 1 and 2. The energy is equal to —4 MeV for param-
eters values: u; = 500 MeV, us = —102 MeV, ug = —2 MeV, b; = 0.5 fm,
by = 1.26 fm, b3 = 2.67 fm. The energy of the independent light particles 1,
3 in the field of heavy particle 2 is equal to the sum of energies of particles 1
and 2, Ey = —8 MeV. The convergence of HHMS and FCI algorithms is shown
in Figure 1. Hyperspherical harmonics calculations were made on the equidis-
tant mesh p < Py = 10 fm with step A = 0.1 fm. The results show slow
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Figure 1. The convergence of HHMS (a) and FCI (b) algorithms for the model of a 3-
body system with nuclear interaction (28); the exact value of the ground state energy is
Ey = —8 MeV.

convergence with increase of the value of maximum hypermoment K,,,, (see
Figure 1). FCI calculations were made with statistics n = 7 x 107. The re-
sults show fast convergence with decrease of the dimensionless Euclidean time
step AT (see Figure 1). The dimensionless Euclidean time is 7 = 7/t,, where
tg = mox%/h ~ 1.57 x 107235, 9 = 1 fm.

In addition, the FCI method was tested for a 4-body system of the particles
with masses my; = mg = mg = mg, my = 00. Light particles 1, 2, 3 interact
only with infinitely heavy particle 4 by nucleon-nucleon potential (28). The
energy of the independent light particles 1, 2, 3 in the field of infinitely heavy
particle 4 is equal to the sum of energies of particles 1, 2, and 3, Ey = —12 MeV.
The FCI calculation with statistics n = 7 x 107 and A7 = 0.01 yields the
following result of linear regression of dependence (22): Ey = 12.16 £ 0.05
MeV, i.e., the absolute uncertainty is small.

4.2 3H,3%6He, SLi, °Be, 12C, 150 nuclei

In the used model in the 3H, **He nuclei neutrons (n) and protons (p) interact
with each other by nucleon-nucleon potentials having repulsive core

3
Van(r) = Vi) () =3 up exp(—12/b;%), (29)
k=1
3
Vp—n(r) = Z ug exp(—1r2 /bi?). (30)
k=1

The parameters u (in MeV) and b (in fm) are

uy =up =500, uhb=wuy=-102, uf=uz=-2,
by =0.53, by =0.38, by=05by=1.26, b =bs=26T7.
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Figure 2. Logarithm of the propagator by !In K% as a function of the Euclidean time 7
for nuclei °H (open circles), 3He (solid circles), *He (solid squares), SLi (open squares),
9Be (stars) *2C (solid triangles) and 160 (open triangles). The lines on display stand for
the results of a linear regression (calculation by the Monte Carlo method for n = 7 x 107
trajectories with a grid step A7 = 0.01).

The propagator K i was calculated using dimensionless variables
by In K (¢,7;¢,0) = byt In |Wo(q)*> — Eo7, 7 > 1, (31)

where by = togo/h = 0.02412, €9 = 1 MeV. The results are shown in Figure 2.
The values of ground state energy are in Table 1.
In the %He, 5Li, Be nuclei neutrons (and proton) interact with a-cluster. In
the used model the nuclear part of a—nucleon potential has repulsive core for
excluding the forbidden (internal) 1s state in the He, Li nuclei.

3
Vaen(r) = Y Uifill + exp((r = Ry)fai)] ™" (32)

i=1

Table 1. Energies of splitting of light nuclei to constituent particles

Atomic Constituent Experimental Theoretical values, MeV
nucleus particles values, MeV [25] FCI HHMS
SH n+n+p 8.482 8.5 8.42
3He p+p+n 7.718 7.7 7.69
SHe n+n+a 0.975 0.83 0.98

5Li n+p+a 3.64 3.1

°Be at+a+n 1.573 1.58

12¢ 3a 7.37 7.39

160 4 14.53 14.52

‘He n+n+p+p 28.296 30.6
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The values of parameters are given in Ref. [12]. The results of the calculations
of the propagator are shown in Figure 2. The values of the ground state energy
are in Table 1.

In the used model in the °Be, 12C, 190 nuclei a-clusters interact with a-
clusters by potential having repulsive core

Va—alr) =Y Ui[L+exp((r— Ri)/a;)] " (33)

=1

The values of parameters are given in Ref. [12]. The results of the calculations
of the propagator are shown in Figure 2. The values of the ground state energy
are given in Table 1.

5 Probability Density for Ground State of Three-Body Nuclei

The calculations of the ground state probability density |¥o|? were made based
on expression (21) at 7 values in the linear part of the graph representing the
dependence In Kg(q,7;¢,0). An example of the probability density for the
ground state of ?Be in the 3-body model is shown in Figure 3.

Figure 3. The probability density |¥o|? for the °Be nucleus and the vectors in the Jacobi
coordinates. The most probable configuration is a + n + « (1). The configurations
o + °He (2) and n + ®Be (3) are less probable.
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6 Conclusion

Feynman’s continual integrals method in Euclidean time and expansion in Hy-
perspherical Harmonics Method with Splines were used for calculations of ground
state properties of nuclei 3H, 3+4:6He, 6He, SLi, ?Be, 12C, and 160. The different
iterative convergence of FCI and HHMS approaches provided the possibility of
obtaining more accurate results in the complementary calculations. Both meth-
ods may be useful for calculations of ground state properties of light few-body
nuclei, e.g., "®°Li, 1°Be, and a-cluster nuclei, e.g., 2°Ne. The HHMS approach
may be used for calculation of the excited states of few-body nuclei both in the
discrete and continuous spectra.
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