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Abstract. New effective method for solving of the system of hyperradial equa-
tions is proposed and testing for 3-body oscillator system and 3H, 3,6He nuclei.
The energy of the ground states of 3H, 3,4,6He, 6Li, 9Be, 12C, 16O nuclei were
calculated by Feynman’s continual integrals method in Euclidean time. The nu-
clei 3H, 3,4He were considered as consisting of protons and neutrons, whereas
the nuclei 6He, 6Li, 9Be, 12C, 16O were considered as α-cluster nuclei. The
agreement with the experimental data on binding energies was achieved us-
ing the effective nucleon-nucleon interaction potentials similar to the M3Y po-
tential. The superpositions of the Woods-Saxon type functions were used as
nucleon-α-cluster and α-cluster-α-cluster potentials.

1 Introduction

For description of experimental data on reactions with light nuclei we need ac-
curate theoretical models and methods of calculation of ground states of these
nuclei. It is desirable to have two (or more) complementary methods. There are
two general approaches to quantum mechanics [1]. The first, and the main one is
based on the Schrödinger equation [1]. For few-body systems it may be solved
by expansion of the wave function into a system of functions, for example, into
hyperspherical harmonics [2]. The Hyperspherical Harmonics Method (HHM)
was used for calculations of nuclei 3H [3], 4He [4], 6He [5], 6He and 12C [6],
9Be [7]. In Ref. [8] the wave function of the three-body system was obtained
using Gaussian basis and the numerical solution of the Hill-Wheeler integral
equations. The Gaussian Expansion Method for few-body systems was used in
Ref. [9] for calculation of the 3,4He ground states. The spline approximation for
solving of hyperradial equations for 3-body system is introduced in the HHM
approach in Section 2. This modified method (HHMS) is tested for harmonic
oscillator model with two sets of parameters.

The second general approach to quantum mechanics is based on Feynman’s
Continual Integrals (FCI) [1, 10, 11]. The FCI method was used for studying
ground states of several light nuclei in Refs. [12, 13]. It is important that the
FCI method may be implemented using parallel computing technologies [14].

233



V.V. Samarin

The FCI method is tested for three- and four-body harmonic oscillator models
in Section 3. Convergence of the complementary methods, HHMS and FCI, for
effective nucleon-nucleon interaction is shown in Section 4. For nuclei, which
may be represented as three- and four-body system, energies of ground state
were also calculated in Section 4. The example of the probability density for
ground state of 9Be in the 3-body model is shown in the Section 5.

2 Hyperspherical Harmonics Method with Spline Approximation

The basics of HHM for 3-body system [2] are described below. The “normal-
ized” Jacobi coordinates (xi,yi) are

xi =

√
mjmk

mj +mk
(rj − rk) , (1)

yi =

√
mi(mj +mk)

m1 +m2 +m3

(
−ri +

mjrj +mkrk
mj +mk

)
, (2)

where ri andmi are radius vectors and masses of particles, respectively. The hy-
perspherical coordinates are Ω = {θx, ϕx, θy, ϕy, α}, x = ρ cosα, y = ρ sinα,
ρ is the hyperradius. The hyperspherical harmonics (functions) are

Φ
lxly
KLM (Ω) =

∑
mxmy

(lxlymxmy|LM)Φ
lxlymxmy
K (Ω), (3)

Φ
lxlymxmy
K (Ω) = g

lxly
K (α)Ylxmx(x̂)Ylymy (ŷ), (4)

(lxi lyimximyi |LM) are the Clebsch-Gordon coefficients, Ylxmx(x̂), Ylymy (ŷ),
are spherical harmonics. The orbital angular momentum for ground state equals
zero, L = 0, therefore ly = lx and

glxlxK0 (α) = N lxlx
K (cosα)lx(sinα)lxP lx+1/2, lx+1/2

n (cos 2α), (5)

P
ly+1/2, lx+1/2
n (t) are the Jacobi polynomials, K = 2n+ 2lxi is hypermoment,
n = 0, 1, 2 . . .. Expansion into hyperspherical functions of the ground state
wave function Ψ0 for L = 0 is

Ψ0(x, y, cos θ) = Ψ̃0(α, θ, ρ) =
∑
lxn

ϕlxlxK0 (ρ)

ρ5/2
ΦlxlxK00(Ω)

=
∑
lxK

f lxlxK0 (ρ)glxlxK0 (α) (2lx + 1)Plx (cos θ) , (6)

ϕlxlxKL (ρ) = ρ5/2f lxlxK0 (ρ) (2lx + 1) , (7)

234



Study of Few-Body and Cluster Nuclei by Feynman’s ...

where θ is the angle between the Jacobi vectors. The main problem is the solu-
tion of the system of hyperradial equations

d2

dρ2
ϕlxlxKL (ρ)+

[
2

~2
ε− (K + 3/2)(K + 5/2)

ρ2

]
ϕlxlxK0 (ρ)

=
∑
K′l′x

U
lxlx;l′xl

′
x

KK′00 (ρ)ϕ
l′xl
′
x

K′0(ρ) (8)

with coupling matrix of the potential energy U = V12 + V13 + V23:

U
lxlx;l′xl

′
x

KK′00 (ρ) = 〈lxlxK0|U |l′xl′xK ′0〉. (9)

There are several laborious methods of solving hyperradial equations: power
expansion [15], artificial hyperradial basis [16, 17], basis of Lagrange functions
[6].

2.1 Solution of System of Hyperradial Equations Using Splines

New method of solving hyperradial equations using cubic spline approximation
is proposed. The idea of this method is simultaneous calculation of the mesh
function ϕi and its second derivative mi. The cubic spline interpolation expres-
sion [18]

ϕlxlxK0 (ρ) ≡ ϕlx,n(ρ) = mlx,n,i−1

(ρi − ρ)3

6hi
+mlx,n,i

(ρ− ρi−1)3

6hi

+
(
ϕlx,n,i−1 −

mlx,n,i−1h
2
i

6

)ρi − ρ
hi

+
(
ϕlx,n,i −

mlx,n,ih
2
i

6

)ρ− ρi−1

hi
, (10)

ρ ∈ [ρi−1, ρi] , hi = ρi − ρi−1, i = 1, 2, . . . N

for function ϕlx,n(ρ) may be written with its values ϕlx,n,i and values of its
second derivative mlx,n,i in the points of mesh. This modified method (HHMS)
has some advantages. The main one is the smooth interpolation between mesh
points with natural boundary conditions

mlx,n,0 = mlx,n,N = 0. (11)

The hyperradial equations on the mesh are

−A−1HϕKL +
1

ρ2
i

(K + 3/2)(K + 5/2)ϕKL + ϕKL′(ρi)
2

~2
ULLKK(ρ)

+
∑

K′ 6=K,L′ 6=L

ϕK′L′(ρi)
2

~2
ULL

′

KK′(ρ) =
2

~2
EϕKL. (12)
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The matrixAwas determined in Ref. [18]. The system (12) represents the eigen-
value problem BΦ = λΦ. Energies are eigenvalues of matrix B and wave func-
tions are eigenvectors of matrixB [19]. The other advantage of HHMS is a small
size of the matrix for a special choice of the non-uniform mesh and fast calcula-
tions, but only for the ground state. A disadvantage of HHMS in the general case
of an arbitrary mesh is that matrix B is unsymmetric. For the equidistant mesh,
B is symmetric, and the method may be used for calculation of both ground and
exited states, but a disadvantage is that matrix B has a large size.

2.2 Exactly solvable harmonic oscillator systems

For verification testing HHMS approach we used 3-body harmonic oscillator
system. Three particles with masses m1 = m3 = m,m2 = ∞ interact with
each other by oscillator potentials:

Vij (r) =
mω2

ij

2
r2. (13)

The frequencies of the normal modes are equal to Ω1,Ω2 and energy of the
ground state is

E0 = ~Ω1
3

2
+ ~Ω2

3

2
. (14)

In the case of ω23 = ω12,

Ω1 =
√
ω2

12 + 2ω2
13,Ω2 = ω12. (15)

Two sets of parameters were used in calculations. In the case of

ω12 = ω23 = ω13 = 1, (16)

Ω1 =
√

1 + 2 =
√

3,Ω2 = 1. (17)

In the system of units with ~ = 1 energy of the ground state is

E0 =
3

2

(
1 +
√

3
)

= 4.098, (18)

and E0 = 4.306 in the case of

ω12 =
√

2;ω23 =
1√
2

;ω13 = 1. (19)

HHMS calculations were performed for ρmax = 5,∆ρ = 0.05, Kmax = 8.
Exact values were obtained and the relative errors were not greater than 0.3%.
In both cases HHMS leads to fast convergence to exact values of the ground state
energy.
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3 Feynman’s Continual Integrals in Euclidean Time

Feynman’s continual integral [1, 10] is a propagator - the probability amplitude
for a particle to travel from one point (q0) to another (q) in a given time t

K(q, t; q0, 0) =

∫
Dq(t′) exp

{
i

~
S [q(t′)]

}
=
〈
q
∣∣∣exp

(
− i
~
Ĥt
)∣∣∣q0

〉
. (20)

Here S[q(t)] and Ĥ are, respectively, the action and the Hamiltonian of the sys-
tem, andDq(t) is the integration measure [20]. For a time-independent potential
energy a transition to the imaginary (Euclidean) time t = −iτ yields the propa-
gator KE(q, τ ; q0, 0) with the asymptotic behavior

KE (q, τ ; q, 0)→ |Ψ0(q)|2 exp
(
−E0τ

~

)
, τ →∞ (21)

or
~ lnKE (q, τ ; q, 0)→ ~ |Ψ0(q)|2 − E0τ, τ →∞. (22)

Equation (22) can be used to obtain the energy E0 as the slope of the linear
part of the graph representing lnKE(q, τ ; q, 0) as a function of τ . The squared
modulus of the ground-state wave function, |Ψ0(q)|2 in the points q of the fi-
nite region corresponding to finite motion can be determined based on expres-
sion (21) at τ values in the linear part of the graph representing the dependence
lnKE(q, τ ; q, 0).

The propagatorKE(q, τ ; q0, 0) can be represented as the limit of a multiple
integral [1, 10, 11]

KE(q0, τ ; q0, 0) = lim
N→∞
N∆τ=τ

( m

2π~∆τ

)N/2
×
∫
· · ·
∫

exp

{
−1

~

N∑
k=1

[m (qk − qk−1)
2

2∆τ
+ V (qk) ∆τ

]}
dq1dq2. . .dqN−1.

(23)

3.1 Calculation of Feynman’s continual integrals by Monte-Carlo method

The values of the propagator KE(q, τ ; q0, 0) were calculated using averaging
over random trajectories with the distribution in the form of the multidimen-
sional Gaussian distribution [12, 14]

KE(q0, τ ; q0, 0) ≈
( m

2π~τ

)1/2〈
exp

[
−∆τ

~

N∑
k=1

V (qk)
]〉
, (24)

〈F 〉 ≈ 1

n

n∑
i=1

Fi. (25)

Parallel calculations by Monte Carlo method [21] using NVIDIA CUDA [22]
technology were performed on the Heterogeneous Cluster of LIT, JINR [23].
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3.2 Exactly solvable harmonic oscillator systems

The verification testing of the FCI method for 3-dimensional harmonic oscilla-
tor which is equivalent to 2-body system was made in Ref. [12]. In addition,
for verification testing of the FCI method we used 3-body harmonic oscillator
system (13)-(15). The FCI method with Monte-Carlo statistics n = 7 × 107

reproduces the exact result E0 = 4.117 ± 0.006 for the system with parameter
values (16)-(18) and E0 = 4.36 ± 0.03 for the system with parameter values
(19).

For extended verification testing of the FCI method we used 4-body har-
monic oscillator system. Four particles with massesm1 = m2 = m3 = m4 = 1
interact with each other by oscillator potentials (13). The expression for total po-
tential energy in terms of “normalized” Jacobi coordinates (x,y, z) is

V = −U0 +
1

2
(2ω)

2 (
x2 + y2 + z2

)
(26)

and the energy of the ground state for ω = 1, ~ = 1 is

E0 = −U0 + 9. (27)

The FCI method with Monte-Carlo statistics n = 7 × 107 reproduces the
exact results with a satisfactory uncertainty: E0 = 9.05 ± 0.1 for U0 = 0 and
E0 = −5.98± 0.02 for U0 = 15. The FCI method leads to fast convergence to
exact values of the ground state energy.

4 Energy of Ground State for Three and Four Body Nuclei

4.1 Exactly Solvable Nuclear Systems

For verification testing of the FCI method for nuclear interactions we used 3-
body system of the particles with masses m1 = m3 = m0,m2 = ∞, where
m0 is the mass of a nucleon. The light particles 1, 3 interact only with in-
finitely heavy particle 2 by nucleon-nucleon potential having repulsive core. The
nucleon-nucleon interaction potentials similar to the M3Y potential (e.g., [24])
was used

V12(r) ≡ V23(r) =

3∑
k=1

uk exp
(
−r2

/
b2k
)
. (28)

The radial Schrödinger equation was solved “exactly” by difference scheme for
2-body system of particles 1 and 2. The energy is equal to −4 MeV for param-
eters values: u1 = 500 MeV, u2 = −102 MeV, u3 = −2 MeV, b1 = 0.5 fm,
b2 = 1.26 fm, b3 = 2.67 fm. The energy of the independent light particles 1,
3 in the field of heavy particle 2 is equal to the sum of energies of particles 1
and 2, E0 = −8 MeV. The convergence of HHMS and FCI algorithms is shown
in Figure 1. Hyperspherical harmonics calculations were made on the equidis-
tant mesh ρ ≤ ρmax = 10 fm with step h = 0.1 fm. The results show slow
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Figure 1. The convergence of HHMS (a) and FCI (b) algorithms for the model of a 3-
body system with nuclear interaction (28); the exact value of the ground state energy is
E0 = −8 MeV.

convergence with increase of the value of maximum hypermoment Kmax (see
Figure 1). FCI calculations were made with statistics n = 7 × 107. The re-
sults show fast convergence with decrease of the dimensionless Euclidean time
step ∆τ̃ (see Figure 1). The dimensionless Euclidean time is τ̃ = τ/t0, where
t0 = m0x

2
0

/
~ ≈ 1.57× 10−23s, x0 = 1 fm.

In addition, the FCI method was tested for a 4-body system of the particles
with masses m1 = m2 = m3 = m0,m4 = ∞. Light particles 1, 2, 3 interact
only with infinitely heavy particle 4 by nucleon-nucleon potential (28). The
energy of the independent light particles 1, 2, 3 in the field of infinitely heavy
particle 4 is equal to the sum of energies of particles 1, 2, and 3,E0 = −12 MeV.
The FCI calculation with statistics n = 7 × 107 and ∆τ̃ = 0.01 yields the
following result of linear regression of dependence (22): E0 = 12.16 ± 0.05
MeV, i.e., the absolute uncertainty is small.

4.2 3H, 3,4,6He, 6Li, 9Be, 12C, 16O nuclei

In the used model in the 3H, 3,4He nuclei neutrons (n) and protons (p) interact
with each other by nucleon-nucleon potentials having repulsive core

Vn−n(r) ≡ V (N)
p−p (r) =

3∑
k=1

u′k exp(−r2/b′k
2
), (29)

Vp−n(r) =

3∑
k=1

uk exp(−r2/bk
2). (30)

The parameters u (in MeV) and b (in fm) are

u′1 = u1 = 500, u′2 = u2 = −102, u′3 = u3 = −2,

b′1 = 0.53, b1 = 0.38, b′2 = b2 = 1.26, b′3 = b3 = 2.67.
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Figure 2. Logarithm of the propagator b−1
0 ln K̃E as a function of the Euclidean time τ̃

for nuclei 3H (open circles), 3He (solid circles), 6He (solid squares), 6Li (open squares),
9Be (stars) 12C (solid triangles) and 16O (open triangles). The lines on display stand for
the results of a linear regression (calculation by the Monte Carlo method for n = 7×107

trajectories with a grid step ∆τ̃ = 0.01).

The propagator KE was calculated using dimensionless variables

b−1
0 ln K̃E (q, τ̃ ; q, 0) ≈ b−1

0 ln |Ψ0(q)|2 − E0τ̃ , τ̃ � 1, (31)

where b0 = t0ε0/~ = 0.02412 , ε0 = 1 MeV. The results are shown in Figure 2.
The values of ground state energy are in Table 1.
In the 6He, 6Li, 9Be nuclei neutrons (and proton) interact with α-cluster. In

the used model the nuclear part of α–nucleon potential has repulsive core for
excluding the forbidden (internal) 1s state in the 6He, 6Li nuclei.

Vα−n(r) =

3∑
i=1

Uifi[1 + exp((r −Ri)/ai)]−1. (32)

Table 1. Energies of splitting of light nuclei to constituent particles

Atomic Constituent Experimental Theoretical values, MeV
nucleus particles values, MeV [25] FCI HHMS
3H n+ n+ p 8.482 8.5 8.42
3He p+ p+ n 7.718 7.7 7.69
6He n+ n+ α 0.975 0.83 0.98
6Li n+ p+ α 3.64 3.1
9Be α+ α+ n 1.573 1.58
12C 3α 7.37 7.39
16O 4α 14.53 14.52
4He n+ n+ p+ p 28.296 30.6
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The values of parameters are given in Ref. [12]. The results of the calculations
of the propagator are shown in Figure 2. The values of the ground state energy
are in Table 1.

In the used model in the 9Be, 12C, 16O nuclei α-clusters interact with α-
clusters by potential having repulsive core

Vα−α(r) =

2∑
i=1

Ui [1 + exp ((r −Ri)/ai)]−1
. (33)

The values of parameters are given in Ref. [12]. The results of the calculations
of the propagator are shown in Figure 2. The values of the ground state energy
are given in Table 1.

5 Probability Density for Ground State of Three-Body Nuclei

The calculations of the ground state probability density |Ψ0|2 were made based
on expression (21) at τ values in the linear part of the graph representing the
dependence lnKE(q, τ ; q, 0). An example of the probability density for the
ground state of 9Be in the 3-body model is shown in Figure 3.

Figure 3. The probability density |Ψ0|2 for the 9Be nucleus and the vectors in the Jacobi
coordinates. The most probable configuration is α+ n+ α (1). The configurations
α + 5He (2) and n + 8Be (3) are less probable.
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6 Conclusion

Feynman’s continual integrals method in Euclidean time and expansion in Hy-
perspherical Harmonics Method with Splines were used for calculations of ground
state properties of nuclei 3H, 3,4,6He, 6He, 6Li, 9Be, 12C, and 16O. The different
iterative convergence of FCI and HHMS approaches provided the possibility of
obtaining more accurate results in the complementary calculations. Both meth-
ods may be useful for calculations of ground state properties of light few-body
nuclei, e.g., 7,8,9Li, 10Be, and α-cluster nuclei, e.g., 20Ne. The HHMS approach
may be used for calculation of the excited states of few-body nuclei both in the
discrete and continuous spectra.
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