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Abstract. We consider a set of three-cluster systems (4He, 7Li, 7Be, 8Be,
10Be) within a microscopic model which involves the hyperspherical harmonics
to represent intercluster motion. We selected such three-cluster systems which
have at least one binary channel. Our aim is to study whether the hyperspherical
harmonics are able and under what conditions to describe two-body channel(s)
(nondemocratic motion) or they are suitable for describing three-cluster contin-
uum only (democratic motion). The main result of the present investigations is
that it is possible to see the evidence of two-cluster structure in the three-cluster
wave function of a pseudo-bound state yet with a rather restricted set of the
hyperspherical harmonics and hyperradial excitations as well.

1 Introduction

The hyperspherical harmonics (HH) method is a powerful tool for solving many-
body problems in different branches of quantum physics, namely atomic, molec-
ular and nuclear physics. In the orthodox realization of the method, a many-
body problem is reduced to a finite or an infinite set of coupled channel prob-
lems, representing the many-body Schrödinger equation as a set of coupled one-
dimensional differential equations. Efficiency of the method has been repeatedly
demonstrated by numerous investigations of few-body problems. Besides, this
method has been constantly advanced by creating a more reliable and universal
technique for description of the discrete and continuous spectra of many-body
systems.

One of the direction for the HH method development is to use a full set of os-
cillator functions which are labelled by quantum numbers of the hyperspherical
harmonics method. We will call them hyperspherical oscillator functions.

In the present paper, we study different channels of decay of three-cluster
systems and ability of the hyperspherical oscillator functions to describe demo-
cratic and nondemocratic decay channels. In literature (see, for instance, Refs.
[1–3]) a democratic decay is a synonym for three-body decay or full disintegra-
tion of a three-body system. This type of the decay is also called a “true” [4]
or “truly” [5] three–body scattering. Contrary to the democratic decay, a non-
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democratic decay stands for a decay of compound system into two fragments
provided that one of the fragments is represented by a bound state of a two-body
subsystem. In what follows we will consider only the dominant three-body con-
figurations of light atomic nuclei.

Note that an oscillator basis is a conventional set of functions which are
involved in many nuclear models, such as a traditional many-body shell model,
the Resonating Group Method, novel ab initio No-Core Shell Model and many
others.

Let us consider the following nuclei and appropriate (dominant) three-cluster
configurations, as well as binary decay channels

4He = d+ p+ n = 3H + p = 3He+ n = d+ d ,
7Li = α+ d+ n = 3He + α = 6Li + n ,

8Be = α+ t+ p = α+ α = 7Li + n ,
10Be = α+ α+ 2n = 6He + α = 8Be + 2n,

(1)

Here we indicated only those two-cluster decay channels of the three-cluster sys-
tems which have a bound state in the corresponding two-cluster subsystem. In
other words, we disregard those binary channels whose threshold energy exceed
the three-cluster threshold.

We are going to study the eigenspectrum of a microscopic hamiltonian of
the above-mentioned three-cluster systems. For this aim we will construct ma-
trix elements of the hamiltonian between many-particle cluster oscillator func-
tions. Diagonalization of the matrix yields eigenvalues and the corresponding
eigenfunctions. Some of the obtained eigenvalues represent bound states of the
compound system, however the largest part of the eigenvalues are discretized
states in two- or three-cluster continuum. The number of the eigenvalues and
their density in the energy range in question depend on the number of oscilla-
tor functions involved in calculation and naturally on the properties of nucleus
under consideration.

2 Method

We start model formulation with an explicit form of wave function for a system
consisting of three s-clusters

ΨLML
= Â {Φ1 (A1) Φ2 (A2) Φ3 (A3)ψLML

(x,y)} . (2)

This is a traditional form of a wave function of the resonating group method
for systems, when at least one cluster consists of two and more nucleons. The
internal structure of clusters (α = 1, 2, 3) is described by the antisymmetric and
translationally invariant wave functions Φα(Aα). Function Φα(Aα) is a wave
function of the many-particle shell model with the most compact configuration
of nucleons. The antisymmetrization operator Â makes antisymmetric the wave
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function of the compound three-cluster system, which is of paramount impor-
tance for the energy region under consideration. Since all functions Φα(Aα) are
fixed, to calculate a spectrum and wave functions of the compound system one
has to determine a wave function of intercluster motion ψLML

(x,y). This func-
tion depends on two Jacobi vectors x and y, locating relative position of clusters
in the space. By using angular orbital momentum reduction, we represent this
function as an infinite series

ψLML
(x,y)⇒

∑
λ,l

ψλ,l;L (x, y) {Yλ (x̂)Yl (ŷ)}LML
, (3)

where x̂ and ŷ are unit vectors, and λ and l are the partial angular momenta
associated with vectors x and y, respectively.

Wave functions of intercluster motion ψλ,l;L (x, y) obey an infinite set of the
two dimension (in terms of variables x and y) integro-differential equations. To
solve this equation we make use of the hyperspherical coordinates and hyper-
spherical harmonics. There are several schemes for introducing hyperspherical
coordinates. We employ the hyperspherical harmonics in the form suggested
by Zernike and Brinkman in Ref. [6], because this form is very simple, it does
not involve bulky calculations and quantum numbers have clear physical mean-
ing. To introduce the Zernike–Brinkman hyperspherical harmonics, we need to
determine the hyperspherical coordinates. Instead of six variables x and y we
introduce a hyperspherical radius and a hyperspherical angle

ρ =
√
x2 + y2, θ = arctan

(
x

y

)
. (4)

At a given value of ρ, the angle θ determines relative length of the vectors x
and y

x = ρ cos θ, y = ρ sin θ, θ ∈ [0, π/2] . (5)

In new coordinates

ΨLML
=
∑
K,λ,l

Â {Φ1 (A1) Φ2 (A2) Φ3 (A3)φc (ρ)Yc (Ω5)} , (6)

where Yc (Ω5) stands for the product

Yc (Ω5) = χ
(λ,l)
K (θ) {Yλ (x̂)Yl (ŷ)}LML

(7)

and represents a hyperspherical harmonic for a three-cluster channel

c = {K,λ, l, L} . (8)

Definition of all components of the hyperspherical harmonic Yc (Ω5) can be
found, for instance, in Ref. [7]. Being a complete basis, the hyperspherical
harmonics account for any shape of the three-cluster triangle and its orientation.
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They also account for all possible modes of relative motion of three interacting
clusters.

As for the hyperradial wave functions φc (ρ), they obey a system of differen-
tial equations with local effective potentials for three structureless particles, or
a set of integro-differential equations with nonlocal effective potentials for three
clusters. To simplify solving a set of integro-differential equations, we invoke a
full set of cluster oscillator functions to expand the sought wave function

ΨLML
=
∑
nρ,c

Cnρ,c |nρ, c〉 .

This reduces a set of integro-differential equations to an algebraic form, i.e. to
the system of linear algebraic equations∑

ñρ,c̃

[〈
nρ, c

∣∣∣Ĥ∣∣∣ ñρ, c̃〉− E 〈nρ, c|ñρ, c̃〉]Cñρ,c̃ = 0. (9)

Cluster oscillator functions for three-cluster configuration are determined as

|nρ, c〉 = |nρ,K;λ, l;L〉
= Â

{
Φ1 (A1) Φ2 (A2) Φ3 (A3)RnρK (ρ, b)Yc (Ω5)

}
, (10)

where Rnρ,K (ρ, b) is an oscillator function (see definition in Ref. [7]) and b is
an oscillator length.

System of equations (9) can be solved numerically by imposing restrictions
on the number of hyperradial excitations nρ and on the number of hyperspher-
ical channels c1, c2, . . . , cNch . The diagonalization procedure may be used to
determine energies and wave functions of the bound states. However, the proper
boundary conditions have to be implemented to calculate elements of the scat-
tering S-matrix and corresponding functions of continuous spectrum.

Wave function (10) belongs to the oscillator shell with the number of oscilla-
tor quanta Nos = 2nρ +K. It is convenient to numerate the oscillator shells by
Nsh ( = 0, 1, 2, . . . ), which we determine as Nos = 2nρ +K = 2Nsh +Kmin,
where Kmin = L for normal parity states π = (−1)

L and Kmin = L + 1 for
abnormal parity states π = (−1)

L+1.

3 Results and Discussion

We involve the Minnesota potential (MP) [8] as a nucleon-nucleon potential in
our calculations. We use a common oscillator length for all clusters. Its value
is selected to minimize the energy of three-cluster threshold. To construct a
wave function of two-cluster relative motion and to determine the energy of
a two-cluster bound state, we employ oscillator basis. Details of two-cluster
calculations can be found in Ref. [9]. We make use of 50 oscillator functions
to calculate the ground state energies of two-cluster systems. This number of
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Table 1. Input parameters of calculations for each nucleus.

Nucleus 3C-config. b, fm u
7Li α+ d+ n 1.311 0.9255
7Be α+ d+ p 1.311 0.9255
8Be α+ 3H + p 1.311 0.9560
10Be α+ α+ 2n 1.356 0.9570

functions provides correct value of bound state energies and their parameters
(for instance, r.m.s. proton and mass radii and so on).

In Table 1 we show input parameters of our calculations. It includes oscilla-
tor length b and exchange parameters u of the selected NN potential.

Consider evolution of 7Li spectrum when we involve more and more hyper-
spherical harmonics. We consider the 3/2− state in both nuclei. This state is
mainly represented by the total orbital momentum L = 1. We restrict ourselves
by the only value of the total spin S = 1/2, and neglect contribution of negative
parity state with total orbital momentum L = 2. For the total orbital momentum
L = 1, we have only odd values of the hypermomentum K = 1, 3, 5. . . . Thus
we represent results with K = 1, K = 3 and so on up to Kmax = 13.

Dependence of energy of the 3/2− states in 7Li on quantum number Nsh is
displayed in Figure 1. Here we presented trajectories of eigenvalues for 7Li cal-
culated with the hyperspherical harmonics Kmax = 7, Kmax = 9, Kmax = 11
and Kmax = 13. Figure 1 demonstrates rather fast convergence of the 7Li

Figure 1. Spectrum of the 3/2− states in 7Li as a function of Nsh and Kmax. Dashed
line – Kmax = 7, dot-dashed line – Kmax = 9, dot-dot-dashed line – Kmax = 11 and
solid line – Kmax = 13.
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ground state energy. For the sake of convenience in Figure 1 we connected all
discrete points by lines, however the results are relevant only for discrete values
of Nsh. Thus we need only restricted number of the hyperspherical harmonics
(Kmax = 7) and small number of hyperradial excitations (or oscillator shells
Nsh ≤ 30) to obtain the bound state in 7Li, i.e. an eigenstate of three-cluster
compound system which lies below the lowest two-cluster threshold 4He+3H.
The first eigenvalue for all values of Kmax “scans” two-cluster continuous spec-
trum with small values of Nsh (≤5) and thus represents continuous spectrum
states in the 6Li+n channel and in the 4He+3H channel. The second eigenvalue
of the three-cluster hamiltonian for 7 ≤ Kmax ≤ 13 is able to describe con-
tinuous spectrum states in three-cluster continuum and in binary channels con-
tinuum. The larger is the number of the hyperspherical harmonics involved in
calculations, the larger region of two-cluster 4He+3H continuum can be achieved
with these basis functions.

In Table 2 we present average distances between clusters in 7Li ground and
excited 3/2− states, calculated with Kmax = 13. These quantities determine the
most probable shape of a triangle joining the centers of mass of interacting clus-
ters. How to calculate the average distances is explained in Refs. [10, 11]. For
each tree, R2 stands for the average distance between a pair of clusters indicated
in brackets, and R1 determines mean distance between the first cluster and the
center of mass of the two-cluster subsystem. One can see that the ground state is
a compact state in all threes of the Jacobi coordinates. The first excited state, as
expected, has dominant 4He+3H structure, since 3H nuclei as a binary subsystem
3H = n+ d is very compact and is located far away (8.13 fm) from 4He. Quite
similar structure is observed for the second excited state. This state, as one can
see in Figure 1, lies below the n+6Li threshold. In this state, the size of 3H is
slightly increased to 4.19 fm compared to the ground and the first excited states,
and distance between 3H and 4He exceeds 9 fm. The third excited state is of
different nature. It is located between two-cluster (n+6Li) and the three-cluster
thresholds, and thus has very distinguished two-cluster n+6Li structure. Indeed,

Table 2. Average distances between clusters for the ground and excited 3/2− states in
7Li.

Tree α+ (n+ d) n+ (d+ α)

E, MeV R1 R2 R1 R2

-8.688 2.88 2.46 2.70 2.99
Eth

(
3H + α

)
=-6.654

-3.939 8.13 3.12 5.81 8.03
-1.644 9.68 4.19 6.69 9.19

Eth
(
n+6 Li

)
=-1.475

-0.439 6.85 18.06 17.38 4.42
1.263 8.80 10.20 16.05 4.71
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in this state the spacing between clusters d and 4He, comprising 6Li, is 4.42 fm,
slightly more than in the ground state (≈3 fm); and the distance from neutron
to the center of mass 6Li is very large – more than 17 fm. It is important to re-
call that the first, second and other excited states belong to two- or three-cluster
continua. The wave functions of these states, as was pointed out earlier, are
normalized to unity within the selected size of a “discrete box”. Thus, Table 2
presents not absolute values of intercluster distances, but their relative values.

Concluding this section we note that we have carried out similar investiga-
tions for a mirror nucleus 7Be as three-cluster configuration 7Be = α + d + p.
The Coulomb interaction, which is more stronger in 7Be, slightly changes en-
ergy of the two-cluster threshold 4He+3He and reduces the energy of the 7Be
ground state with respect to two- and three-cluster thresholds. Therefore, all re-
sults and conclusions deduced for 7Li nucleus are valued for the mirror nucleus.
For the lack of room in the present paper, we will not dwell on the results for
7Be.

Now we consider spectrum of the 0+ states in 8Be. With the three-cluster
configuration 4He+3H+p we have got the following binary channels: 4He+4He
and 7Li+p. We do not consider the binary channel 5Li+3H as its threshold en-
ergy exceeds the three-cluster threshold. The energy of 0+ states in 8Be, cal-
culated with only one hyperspherical harmonic K = 0 and with Kmax = 14,
as a function of Nsh is displayed in Figure 2. The first and important result is
that only one hyperspherical harmonic (K = 0) is able to produce one state in
the 4He+4He continuum and one state above the 7Li+p threshold but below the
three-cluster 4He+3H+p threshold. Besides, the “ground” 0+ state appears in
the two-cluster 4He+4He continuum starting with Nsh = 2, while the first ex-
cited state needs more than Nsh = 30 oscillator shells to appear in the 7Li+p
continuum. It is interesting to note (see the lower part of Figure 2), that hy-
perspherical harmonics with Kmax = 14 generate one bound state (below the
4He+4He threshold) and four states in two-cluster 4He+4He continuum and also
two states in the 7Li+p continuum. Thus this number of hyperspherical harmon-
ics (i.e. all harmonics with 0≤ K ≤14 or 36 channels) is able to describe some
states of elastic 4He+4He and 7Li+p scattering and the reaction 4He+4He⇐⇒
7Li+p at two discrete energy points. It should be stressed that these results are
obtained without imposing the boundary conditions.

Let us consider spectrum of 10Be, provided that 10Be is treated as aα+α+2n
three-cluster configuration, and analyze what is the most probable geometry of
this three-cluster structure. In Table 3 we show the ground and the first excited
0+ states in 10Be. The results are obtained with the MP. In Ref. [9] the exchange
parameter u of the potential was selected so to reproduce the energy of the 10Be
ground state with respect to the binary threshold 6He+α. We use the same value
of this parameter. With this value of the parameter u we obtained the relative
position of the threshold energies of the binary 6He+α and 8Be + 2n channels
indicated in Table 3.
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Figure 2. Spectrum of 0+ states in 8Be as a function of Nsh, calculated with Kmax = 0
(upper part) and Kmax = 14 (lower part of the figure).

Table 3. Energies (in MeV) of the ground and the lowest excited 0+ states in 10Be.
Dominant two-body channels and their threshold energies Eth are also presented.

ν 0 1 2 3 4

Eν -9.16 -2.20 -0.34 0.56 1.16
Eth -1.75 -0.02

Channel 6He+α 8Be + 2n

As can be seen from Table 3, the ground state and the first excited 0+ state
are below the lowest binary decay threshold of 10Be. The second excited state
lies between 6He+α and 8Be + 2n thresholds, while the rest of the states belong
to three-cluster continuum.
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Figure 3. Spectrum of the 0+ states in 10Be as a function of Nsh and Kmax. Dotted
lines correspond to Kmax = 6, dashed lines denoteKmax = 10, and solid lines stand for
Kmax = 14.

Spectrum of the 0+ states in 10Be as a function of the number of oscillator
shells and maximum value of hypermomentum involved in the calculations is
plotted in Figure 3.

As evident from Figure 3, to reproduce the energy of the ground state it is
sufficient to invoke basis functions with Nsh = 20 and Kmax = 6. The higher
is the energy of the state, the larger value of the number of oscillator shells
and hypermomentum should be used to reach the convergence. However, the
third excited state with energy E = 0.56 MeV above the three-cluster decay
threshold of 10Be somewhat differs from the other states presented in Figure 3.
Hyperharmonics with Kmax ≥ 10 slightly contribute to the energy of this state
as opposed to the neighbouring excited states.

4 Conclusion

Within a microscopic three-cluster model we have considered spectra of a set
of light nuclei: 7Li, 7Be, 8Be, 10Be. We selected those nuclei which have a
dominant three-cluster channel and one or more two-body channels below the
three-cluster decay threshold.

The main result of the present investigations is that it is possible to see the
evidence of two-cluster structure in the three-cluster wave function of a pseudo-
bound state yet with a rather restricted set of the hyperspherical harmonics and
hyperradial excitations as well. It was demonstrated that the eigenstates of
the three-cluster hamiltonian have correct asymptotic behaviour both for bound
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states below two-cluster threshold and states in two-cluster continuum. Analysis
of the correlation functions in different Jacobi trees reveals polarizability of two-
cluster bound states when the distance between the third cluster and two-cluster
subsystem is relatively small.
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