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Abstract. We present results for the phase transition phenomenon in sd- and
pf-shell nuclei from calculations performed in the symmetry-adapted basis of
the Algebraic Microscopic Pairing-plus-Quadrupole Shell Model. Besides the
quadrupole and the pairing (isoscalar plus isovector) interactions, the Hamil-
tonian also includes the spin-orbit interaction as single-particle terms of the
studied systems. Comparison is made between the description obtained for the
low-lying excitation energy spectra when these terms are present or not in the
Hamiltonian.

1 Introduction

Symmetry-adapted nuclear models [1] are useful tools to explore nuclear sys-
tems. When a dynamical symmetry is present in the studied system, its descrip-
tion becomes incredibly simple. Usually, more than one such modes exist and
they may simultaneously be present in the system as they compete, so one can
explore the contribution of each of these simple limits into the resulting real-
istic behaviour of the system. A fundamental illustration of such an approach
is presented by the algebraic structure of the shell model, where the long-range
quadrupole-quadrupole interaction competes with different types (isovector and
isoscalar) short-range interactions. The investigations of the possible dynamical
symmetries in the microscopic Pairing-plus-Quadrupole Shell Model [2], led to
establishing important connections between the groups generating the Hamilto-
nian of the model. These connections simplified the description of the influence
of the different interactions on the energy spectra and transitions in realistic nu-
clei.

In the present work, we discuss a possible application of the Symmetry-
Adapted Pairing-plus-Quadrupole Shell Model [2]. More specifically, we demon-
strate how it can be applied to the description of properties of nuclei from the
lower part of the sd shell and the lower p f shell. We also point out the possibil-
ity to effectively explore and describe the phases and phase transitions in these
nuclei. We compare the results obtained when the spin-orbit term is included in
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the Hamiltonian with the case when it is not. Furthermore, we investigate the
effect of suppression of the isoscalar pairing.

2 The Algebraic Pairing-plus-Quadrupole Shell Model

The current approach uses a Hamiltonian that combines the quadrupole-quadru-
pole interaction with both the isoscalar and the isovector pairing terms. Other
terms, like the spin-orbit interaction, may also be added. In earlier works [2—4],
the important result that the spatial subalgebra U () of the shell-model algebra
U (492) contains two distinct dynamical symmetries defined by the reduction
chains - one through SO(£2) and another through SU (3) was obtained. A direct
connection between the pairing and the quadrupole bases was established which
allowed the investigation of the influence of the short- and the long-range part of
the residual interaction on the reproduction of the experimental energies of the
nuclear systems.

In our study [2-4] of the algebraic structure of the shell-model algebra U (412),
the correspodence of the represantations of the microscopic pairing algebra SO(2)
with the SO(8)-ones was used, since it contains all the limits of the SO(8)—
pairing model. The pair creation operators that appear in the Hamiltonian of this
limit are: S} =, 6“/212i1[a;%% X alT%%]gb% and Pl =", ﬁ“/ngil[alT%% X
T

14

coupling in the angular momentum /, spin s = 1/2 and isospin ¢t = 1/2 of the

creation (annihilation ) operators all . (a 111 ), of an individual nucleon. The pair
22

a1 11005, Where B = 41 or —1 are phase factors, and the bracket denotes the

annihilation operators can be obtained from these by Hermitian conjugation.
Elliott’s SU(3) algebra [5], generated by the components of the quadrupole
operator: @, = >, /8(20 + 1)(aTl%% X &l%%)izg?) and the angular momen-
n

twm one: L, = >3, /42l +1)(I +1)/3(a%;z1 x &l%%)&g?),

terms of the same operators a;l 1(a;11) is also naturally contained in U (£2).
22

expressed in

There exists a simple relation between the SU(3) representation labels (A,u)
and the shape parameters 3, of the geometric model [6]. Hence, the SU(3)
classification of the many-body states has the advantage of allowing for a geo-
metrical analysis of the eigenstates of a nuclear system. As a result, in U (452) we
obtain four reduction schemes, in which as distinct dynamical symmetries of the
shell model algebra appear the SU (3) algebra [6] and one of the branches of the
SO(8) ~ SO(Q) pairing algebra [7]. This allows the classification of the ba-
sis states of the system along each of them. The relation between these chains is
established on the basis of the complementarity of the spatial dynamical symme-
tries in U (2) to the Wigner’s spin-isospin Ugr(4) D Ug(2) ® Ur(2) symmetry.
This elucidates the algebraic structure of an extended Pairing-plus-Quadrupole
Model, realized in the framework of the Elliott’s SU(3) scheme [6].
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Consequently, all chains determine full-basis sets and could be expressed
through each other [2]. The eigenstates of the rotational limit of the model
with quadrupole-quadrupole interaction are the basis states labeled by the quan-
tum numbers of the representations (A, i) of the algebras in the SU(3) chain

Ug) = ‘{ Fra(\ WKL, {F}B(ST) Mz JM>. Correspondingly, the basis
states in which the pairing interaction is diagonal [7] are labeled as |¥p) =
‘{f}v[pl,pg,pg}ﬁL, {f}B(ST)Mr: JM>. In the above states, {f} label the

representations of U (), v[p1, p2, p3] are the representations of the SO(8) alge-
bra, «, 5, £, and K give the multiplicity labels of the corresponding reductions.
Using the expansion of the pairing states in the SU(3) basis states and the diag-
onalization procedure for its matrix in the SU(3) basis, we obtain numerically
the probability with which the states of the SU (3) basis enter into the expansion
of the pairing bases.

3 Phases and Phase Transitions between the Quadrupole—SU(3)
and the Pairing—SO(8) Limits of the Model

3.1 Basis States and Hamiltonian

The basis states in which we perform our calculations

{(Ars i), (Aus ) (X, )KL, {Sr, S, }S; JM) ey

are built as SU (3) proton () and neutron (v) coupled configurations with well-
defined particle number and good total angular momentum J.
We use a Hamiltonian with four ingredients of the form

_ t tp_ X _ s
H=GoS'S+G:P'P-2QQ CZI,.S,, )
1

where the four parameters x, Go, G1 and C are the strengths of the quadrupole-
quadrupole, the isoscalar pairing, the isovector pairing and the single-particle
spin-orbit term, respectively. The values of the four parameters (y, Gy, G1, and
C) in (2) are determined from the fitting procedure. We also do three-parameter
calculations where the spin-orbit term is not taken into account.

3.2 Phase Transitions on the Phase Diagrams

The relative weights of the interactions entering the eq. (2) serve as control pa-
rameters and define the phase diagram of the system (see Figure 1). In the case,
when there are more than two dynamical symmetries, more than one control
parameters should be introduced.

The quadrupole interaction has SU(3) dynamical symmetry. Also, a simple
model of the isovector and isoscalar pairing can be obtained in an L, S, T scheme
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which has SO(8) dynamical symmetry:

SO(8)
v l e

SO7(5) ® SOs(3) SO(6) SOs(5)® SOr(3)  (3)
N 1 v

SOr(3) ® SOs(3)

From left to right these dynamical symmetries correspond to pure isovector in-
teraction, pairing interaction with both isoscalar and isovector pairing with equal
strengths, and only isoscalar pairing interactions, correspondingly. Next, the
pairing-plus-quadrupole interactions define a submodel with a phase-space of
two dimensions (two control parameters), which can be illustrated by a triangle.
Each corner corresponds to a dynamical symmetry in the reduction of the spa-
tial subspace of the shell model algebra U (4€2): one of them is the SU(3), and
the others are each of the three limits (3) of the pairing algebra SO(8). Hence,
analytical solutions are available for the total pairing, with isoscalar and isovec-
tor interactions with equal strenghts, the pure isoscalar SOg(5) and for the pure
isovector SO (5) interactions [8]. Although the 1.s term, compared to the other
terms in the Hamiltonian does not belong to any dynamical symmetry, we may
study how its presence changes the interplay between the rest of the terms in the
Hamiltonian.

One possible convenient choice for the two control parameters in the Hamil-
tonian is to take x to represent the relative strength of the two kinds of pairing,
s0 Gp = 2G,G1 = (1 — 2)G,0 < z < 1, and y to describe the relative weight
of the quadrupole and the pairing strength G, s0 x = yxp, G = (1 — y)xp,0 <
y < 1), where x, = x + Go + G1. As aresult, the phase diagram is a triangle
(see Figure 1(a)), where the three limiting cases at its vertices are defined by
the conditions: y = 1, x— arbitrary, for the SU(3) limit, z = 1,y = 0 for the
isoscalar case and x = 0,y = 0 for the isovector one. By means of their values
we can evaluate the role of each of the three interactions in the description of the
realistic nuclear spectra in each nucleus.

With the rise of the atomic number A and the increasing strength of the spin-
orbit force, the L — .S coupling is destroyed by it and the system prefers the j — j
coupling. This adds a new dimension in the phase diagram which turns to a
three-dimensional one, that can be illustrated by a tetrahedron (see Figure 1(b)).
Then, the distance from the L — S plain (1 — z) can be chosen as the third
control parameter. This new control parameter z enters as C' = (1 — 2)Xmax>
Xp = ZXmax, Where 0 < z < 1. This last parameter, which is equal to the sum
of the values of all parameters in the Hamiltonian (2) xjnax = X + Go+G1+C,
is the scale parameter. Obviously, at z = 1 C' = 0 and the two-parameter case
(the triangle) is restored. At z = 0, only the [.s term remains.

In the three-parameter case, when the spin-orbit interaction is not part of the
Hamiltonian, the parametrization is made with two control parameters z and y
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(a) (b) spin orbit

SO (5)

X
SUB3) SO.(5) A‘»
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Figure 1. The two-parameter symmetry diagram (symmetry triangle) and the three-
parameter symmetry diagram (symmetry tetrahedron).

which leads to the following form:
H =xmax{-3$QQ+2(1-9)ST.S+ (1 -2)1-y)PI.P}. 4

When we include the spin-orbit interaction, introducing as a third control pa-
rameter z, the Hamiltonian (2) can be rewritten as

H :dex{_yQiQQ—’—x(l_y)zSTS"‘(l_x)(l_y)ZPTP

The above phase diagrams allow us to investigate the influence of these residual
interactions on the spectra in real nuclear systems.

3.3 Choice of Nuclei and Calculation Procedure

The systems that we study are chosen according to the following criteria. First,
we aim at full-space calculation with no truncations involved, so we try to keep
the number of the valence particles reasonable. Moreover, we need a sufficient
number of experimental values available for each nucleus in order for the fitting
procedure to make sense. Our choice in this paper are the nuclei 2°Ne from the
sd shell and **Ti from the pf shell. Both systems have two protons and two
neutrons in their valence spaces.

The calculation procedure that we use consists of the following major steps.
First, we generate [9] the admissible SU(3) irreps for each type of particles.
Then, we generate the SU(3) basis and the Hamiltonian expressed in terms of
SU(3) tensors. Finally, we construct the matrix elements of the interactions
[10] and search for the best description of the experimentally known lower-lying
positive-parity energy states [11]. This is determined from a three (or four)

parameter fit minimizing the RMS deviation o = \/ >oi(Ehy, — Eg,,)?/d of
our theoretical results (with d = N — p, where N - number of experimental
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points, p- number of parameters in the fit). Finally, using these obtained results,
we illustrate them with graphics for the behaviour of the quantities of interest.

4 Results

First, let us give the best-fit values obtained for both nuclei with the Hamiltonian
(4). For 2°Ne, the values are G§*** = 0.29 MeV, G4°*t = 0.29 MeV, x>t =
0.11 MeV, while for 44Ti, we obtain GZ** = 0.11, G&5! = 0.25 MeV, y>** =
0.02 MeV. If the spin-orbit term is included in our calculation (when using the
Hamiltonian (5)) then the best-fit result is obtained with a zero value for the
isoscalar strength G. The values for the nucleus 2°Ne are Ggm =0, Gl{“t =
0.48 MeV, Xbe“ = 0.12 MeV, and C?est = 3.36 MeV, while for **Ti we obtain
Ghest = 0, Gbest = 0.29 MeV, x**** = 0.03 MeV, and C**s* = 1.08 MeV.
We see that for these latter cases, the isoscalar pairing is eliminated from the
description of both systems.

Figure 2 displays the dependence of energy excitation values on two control
parameters when using the Hamiltonians (4) and (5). In all the pictures, the
maximum value is achieved in the SU(3) corner of the phase diagram. On the
same figure, one can also see the position (denoted as a black dot) of the best-fit
result which for 2°Ne lies at the values 2 = 0.50, y = 0.16 for the case of using
the Hamiltonian (4) and x = 0, y = 0.20 for the Hamiltonian (5). For **Ti
we obtain the result x = 0.31, y = 0.05 for the Hamiltonian (4) and x = 0,
y = 0.10 for the Hamiltonian (5). These numbers confirm the more rotational
nature of the nucleus 2°Ne compared to 44Tj. The result from a calculation,
performed for 20Ne in [12] with a Hamiltonian similar to ours which lacks the
proton-neutron pairing terms was used in [13] to extract the values of the control
parameters which correspond to the best-fit outcome. The result differs from our
outcome, where we obtain a point inside the symmetry diagram, so the pairing
interaction is more strongly present.

Because of the symmetry non-conserving role of the spin-orbit term in the
Hamiltonian, we choose to fix the parameter z and to study how the inclusion
of this term affects the interplay between the rest of the present symmetries. So,
we display the dependence of the excitation energy spectra on the two control
parameters x and y with a value of the third parameter z obtained from the best-
fit value for the spin-orbit strength (when included in the Hamiltoinan) and equal
to zero (when it is not included).

The effect of suppression of the isoscalar pairing term when the spin-orbit in-
teraction is present in the Hamiltonian has been noticed earlier [14]. The mech-
anism whereby this suppression takes place was discussed in detail in [15]. The
effect may also be attributed to the similar character of the structure of the two
operators as SU (3) tensors.

Next, we can further present the results from Figure 2 in two simpler ways
(or scenarios) for 2Ne and **Ti:
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Figure 2. Three dimensional plots with results for the phase transitions in the J = 4™ and
J = 87 states from the ground-state band in the nuclei °Ne and **Ti. Results without
the use of the spin-orbit term in the Hamiltonian are on the left while those obtained
with the spin-orbit term included are on the right. The black dots show the point on the
symmetry diagram for which the best-fit value in describing the excitation energy spectra
is achieved.

(a) If we take ().Q) and the spin-orbit interaction with strengths equal to the
ones recommended by the best-fit result (i.e. fix the values for parameters y and
z) and vary parameter x systematically;
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Figure 3. Excitation energies for the states from the ground-state band in the nuclei *°Ne
and *4Ti. Results with the spin-orbit term in the Hamiltonain (full lines) are compared
to the outcome obtained without the use of the spin-orbit term (dashed lines) and the
experimental data [11] (dotted lines).

(b) If we take x = 0.5 (i.e. Gy = (1 - equal isovector and isoscalar pairing),
fix the spin-orbit interaction (the value for the parameter z) and vary the values
of the parameter y systematically.

These two choices can also be realized for the case of no spin-orbit terms
present in the Hamiltonian.

In Figure 3 one can see a comparison of the result obtained with and without
the use of the spin-orbit terms in the Hamiltonian. It is seen from the figure that
for the 2°Ne in the sd shell, where the spatial symmetry group is U (6) reducing
directly to the “pairing” symmetry O(6), which prescribes that both types of
pairing enter with equal strengths Go = G1;x = 0.5, the best-fit result gives
exactly these values. Though it is not expected a priori. The inclusion of the
spin-orbit interaction is not necessary for this shell, because an intruder level
from the upper shell is not involved here. For the *4Ti in the next pf shell this
is not the case, since the f7 /5 level comes very low in energy, and is considered
as a separate shell, which is due to some spin-orbit interaction. Even without it,
Gy < G and it is eliminated by C. It must be noted that x is much smaller
in this case, and it is obvious that the g.s. band does not show a rotational
behaviour. These effects are well reproduced by our approach.
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5 Conclusions

We applied the Symmetry Adapted Pairing-plus-Quadrupole Shell Model to the
description of low-lying positive-parity states of the N = Z nuclei 2°Ne and
44Ti from the lower sd and the lower pf shell. The Hamiltonian was expressed
in terms of control parameters which allows us to study the interplay and the
contribution of number of dynamical symmetries as phases. The difference be-
tween the more rotational character of the excitation spectrum of 2°Ne compared
to the more vibrational one of *4Ti, observed experimentally, is confirmed and
illustrated by our results.
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