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Abstract. Many years ago the possibility of classical (without tunneling of
Gamow) calculation of the nuclei decay half-life’s has been demonstrated. Such
possibility was based on the diffusion mechanism of Langevin-Kramers’ decay
process, the classical interpretation of the Bohm-Chetaev mechanics, the hy-
pothesis for the presence of the Chetaev’s dissipative forces generated from the
Gryzinsky translational precession of the charged particles spin. In this paper
an unified model of proton, alpha decays, cluster radioactivity and spontaneous
fission half-lives is present as an explicit function, which depends on the total
decay and kinetic energies, the number of protons and neutrons of the mother
and daughter nuclei and from a set of digital parameters. The half-lives of the
573 nuclei taken from NuDat database together with the recent experimental
data from Oganessian paper provide a basis for discovering the explicit form of
the solution of Kramers of the Langevin type equation in a framework of inverse
problems of the Alexandrov dynamic auto-regularization method (FORTRAN
program REGN-Dubna). The procedure LCH in program REGN permitted to
reduce the number of digital parameters from 137 to 79. The model describes
424 decays quantities with deviation of order one in years power scale.

1 Introduction

The beginning of the twentieth century brought surprising non-classical phe-
nomena. Max Planck’s explanation of the black body radiation [1] the work of
Albert Einstein on the photoelectric effect [2], Niels Bohr’s model of the elec-
tron orbits around the nuclei [3], the existence of protons and neutrons in the
atomic nuclei [4, 5] established what is now known as quantum theory.

1.1 Bohmian mechanics

The ignored by the scientific community till present Bohmian quantum me-
chanics was first proposed by Louis de Broglie [6] and rediscovered by David
Bohm [7], many years later [8]. In 1926 Schrödinger published his equation
for the wave function (field) ψ(r, t) [9]; in 1932 von Neumann put quantum
theory on rigorous mathematical basis [10]. The main result was a state that
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quantum-mechanical probabilities cannot be understand in terms of any con-
ceivable distribution over hidden parameters. In 1935 Einstein, Podolsky and
Rosen [11], based on the hypothesis for the absence of action at a distance, ar-
gued that the quantum theory is either nonlocal or incomplete. In 1952 David
Bohm [7] demonstrated that von Neumann theorem [9] has limited validity. In
1964, inspired by the paper [11] and Bohm’s works on nonlocal hidden vari-
ables [7], Bell elaborated a theorem establishing clear mathematical inequal-
ities, now known as Bell inequalities, for experimental results that would be
fulfilled by local theories but would be violated by nonlocal ones [12]. In 1987
Bell explained that the orthodox (Copenhagen) interpretation of the Quantum
mechanics is not adequate to the processes in the Nature, nevertheless that the
calculations describe the experimental data [13]. Contemporary clear and full
presentation of Bohmian quantum mechanics, including its chemical many par-
ticles applications, which can be seen in papers [14, 15]

1.2 Chetaev’s stable model

In 50s of the 20th century, Nikolai Gurevich Chetaev [16] used the Lyapunov
theorem for arbitrary small perturbation forces, which can do the motion unsta-
ble, formulated his famous theorem for “stable trajectories in dynamics”. The
reason for such a stability Chetaev explained with existence of small dissipa-
tive forces with full dissipation, which always exist in the nature. Analyzing
holonomic mechanical systems, Chetaev demonstrated that its solutions give us
a picture of quantum phenomena, because of analogy with Schrödinger type
equation. The origin of dissipative forces for the stable movement (orbits) of
the electrons in the atoms can be the precession of the proton and electron spin.
Such statement was proposed by Michal Gryzinsky [17], who demonstrated the
description of Hydrogen atom Ballmer’s series in a framework of classical Ke-
pler problem with phenomenological vector potential. The source of the Gryzin-
sky potential is the Coulomb interaction and the oscillating electromagnetic field
of photon and electron caused by translational precession of the spin.

2 The Langevin-Kramers Description of Nucleus Decays

In papers [18], the Chetaev theorem on stable trajectories in dynamics was
generalized to the case, when the Hamiltonian of a system is explicitly time-
dependent. In a case of particle with mass m in the field of conservative forces
presented by U , which depends on the time, the result was that the Chetaev’s
motion stability condition has the form of Schrödinger equation

i}
∂ψ

∂t
= − }2

2m
∆ψ + Uψ . (1)

The substitution ψ = A exp( i~S), where S is the classical action, in Eq. (1)
born an equivalent 2-system of equations, known as Bohm-Madelung system of
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equations [14, 19]

∂A

∂t
=

1

2m
(A∆S + 2∇A∇S) , (2)

∂S

∂t
=

[
(∇S)2

2m
+ U − ~2

2m

∆A

A

]
. (3)

It is important to note that the last term in Eq. (2),

Q = − ~2

2m

∆A

A
, (4)

is the quantum potential of the Bohm ψ-field. After the substitution P (q, t) =
ψψ∗ = A(q, t)2 in Eq. (2), we have the forms

∂P

∂t
= − 1

m
∇(P∇S) (5)

and

∂S

∂t
+

(∇S)2

2m
+ U − ~2

2m

[
∆P

p
− 1

2

(∆P )2

p2

]
= 0.

The solution of Eq. (3) is the probability density P (q, t) to find the particle from
Eq. (1) in a certain point in the space-time. According to Eq. (4) the vector
variable v = ∇S/m has meaning of velocity.

In paper [20], for the description the half-life data of the alpha-, cluster de-
cays and spontaneous fissions was used the Kramers diffusion mechanism over
potential barrier [21]. The theoretical argument was that the probability den-
sity P (q, t) moves according to the laws of classical mechanics with a classical
velocity v = ∇S/m [18].

The explicit form of half-life formulae was derived in the framework of
Langevin’s theory of Brownian motion [22], diffusion mechanism of Kramers
over potential barrier [21] and Fermi-gas model for connection between ther-
modynamic temperature and internal excitation energy of many particles sys-
tem [23]

lg T1/2 = − lg
WKramers

2π
+ lg exp

(
A

8µ

)1/2
VCoul − Ek√

Ek
,

where the charge Coulomb potential is

VCoul =
(Z − Zcl)

RCoul
Zcl , RCoul = RA−Acl,Z−Zcl +RAcl,Zcl +RNuclF ,

A and Z are the mass number and charge of parent nucleus, ZZcl is the charge
of the daughter nucleus and RCoul [fm] is the minimal Coulomb radius, and the
variable Ek [MeV] is the kinetic energy of the cluster.
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It is important to note that from numerical point of view (the number of free-
dom in the sense of Weierstrass approximation theorem), the half-life according
to “Kramers’ over potential barrier picture” and “Gamow’s tunneling quantum
mechanism” [24], are equivalent to the Geiger-Nuttall formulae [25].

The aim of this paper is to apply the results of paper [20] for the description
the half-life data for of proton (22 decays), alpha (497 decays), cluster (28 de-
cays) decays and spontaneous fissions (26 decays) from NUDAT data-base [26]
and paper [27], total 573 data.

3 Formulation of the Inverse Problem

If we rewrite Eq. (5) in the form

TTh1/2(Z,N.a) = 10W (Z,N,a)+U(Z,N,a), (6)

where W (Z,N, a) and U(Z,N, a) are unknown functions of the variables Z,
N , Zcl, Ncl, kinetic energy Ek, total energy Qt, isotopic spin characteristics of
parent nuclei and a set a = {ai} = ai, i = 1, . . . , n unknown digital parameters,
the solution of over determined nonlinear system of M algebraic equations for
n real unknown parameters

T Expt
(1/2)(Zj , Nj) = T Th

(1/2)(Zj , Nj , ((ai), i = 1, . . . , n)), j = 1 . . . ,M , (7)

whereM ≥ n, and the superscripts “Expt” and “Th” mean the experimental and
model values of the half-life, correspondingly.

3.1 Solution of the over determined system of equations and discover-
ing the explicit form of functions

For solution of ill-posed problem (7) (see [28]) we use the Alexandrov dynamic
autoregularization method (FORTRAN code REGN-Dubna [29–31]. The use
of procedure LCH in REGN permits to discover the explicit form of unknown
functions because one can chose uniquely the better one from two functions
which give the same hi-squared [32].

4 Unified Description of the Proton, Alpha, Cluster Decays and
Spontaneously Fissions Half-Life

In NuDat database [26], the 519 half-life data for proton, alpha, cluster decays
and spontaneous fissions are published. Also 54 data for the alpha decay are are
presented in [27]. So, in our database we will use 573 half-life data.

4.1 The choose of the variables

For solving such type of inverse problems it is very convenient to choose the
variables to be in the interval [−1,+1], as well as the variables to be linearly
independent.
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By using simple nonlinear substitutions from 8 variables

A = Z +N,Z,N,N − Z,Acl = Zcl +Ncl, Zcl, Ncl, Ncl − Zcl

we choose the variables

v1 =
Z

A
, v2 =

N

A
, v3 =

N − Z
A

, v4 =
Z

Acl
,

v5 =
Ncl

Acl
, v6 =

Ncl − Zcl

Acl
, v7 =

Ek
Qt

, v8 =
Zcl(Z − Zcl)

ZZcl
.

The isotopic spin dependence is included in the analysis with using the
variables v9 = v10 = v11 = 0, if A,Z,N are even and if A,Z,N are odd
v9 = v10 = v11 = 1.

4.2 Explicit form of the half-life as function of Z,N and parameters aaa

The explicit from of the function W (Z,N, a) is:

W (Z,N, a) = − exp (an−2)R(Z,N, a) +MagNumc(Z,N, a) ,

MagNumc(Z,N, a) = AZ(Z,N, a)
exp (Z − ZMN )2

(Z − ZMN )2 + w2
Z)

+AN (Z,N, a)
exp (N −NMN )2

(N −NMN )2 + w2
N )

,

AZ(Z,N, a) = exp
(
aNp2+4 + ΣNp1i=1 (ai+9Np1vi

+ ai+10Np1v
2
i + ai+11Np1v

3
i )
)
,

AN (Z,N, a) = exp
(
aNp2+5 + ΣNp1i=1 (ai+12Np1vi

+ ai+13Np1v
2
i + ai+14Np1v

3
i )) ,

where ZMN , NMN are the nearest to Z and N magic numbers and wZ , wN are
equal to the half of difference between magic numbers in which interval belong
Z and N correspondingly. For the radius R(Z,N,A) [20] with influence of
isotopic spin correction we have

R(Z,N, a) = (Be(Z,N, a)((A−Acl)1/3 +A
1/3
cl )− 1)Ce(Z,N, a),

Be(Z,N, a) = exp (aNp2+2) exp
(Np1∑
i=1

(ai+3Np1vi + ai+4Np1v
2
i

+ ai+5Np1v
3
i ) +Bc(Z,N, a)

)
(8)

Bc(Z,N, a) =

3∑
i=1

aNs+3+iv8+i
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Figure 1. The minimal Coulomb radius RCoul [fm]
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Figure 2. The difference between of the Expt and the Th of lgT1/2.
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Ce(Z,N, a) = exp (aNp2+3) exp
(Np1∑
i=1

(ai+6Np1vi + ai+7Np1v
2
i

+ ai+8Np1v
3
i ) + Cc(Z,N, a)

)
(9)

Cc(Z,N, a) =

3∑
i=1

aNs+6+iv8+i

For the term U(Z,N, a) in Eq. (6), we have [21]

U(Z,N, a) =

√
A

Mu(Z,N, a)

Zcl(Z−Zcl)
R(Z,N,a) Ek√

Ek

Mu(Z,N, a) = an−1(1 + exp−(aNp2+1 + sMu(Z,N, a))2) ,

sMu(Z,N, a) =

Np1∑
i=1

(aivi + ai+Np1v
2
i + ai+2Np1v

3
i ) +Muc(Z,N,A) ,

Muc(Z,N, a) =

3∑
i=1

aNs+6+iv8+i .

The integers in the above formulae have a valuesNp1 = 8, Nc = 3, Np2 = 15,
Np1 = 120, Ns = Np2 + 5 = 125, n = Np2 + 5 + 3Nc+ 3 = 137. By using
a Fortran code, the initial number of unknown parameters n = 137 is reduced
to 79. The estimation of description accuracy χ2 = 346 is calculated as in the
following way:

χ2 = Σ421
k=1

(
Expt(Zk, Nk)− Th(Zk, Nk, a)

σ(zk, Nk)

)2

where

σ(Nk, Zk, a) = σstat(Nk, Zk) + Expt(Zk, Nk)

χ2 =

√
χ2

346− 79
= 1.02.

5 Conclusion

The presented model of proton, alpha, cluster decays and spontaneous fissions
half-life describes with accuracy less than of one order in year’s power scale,
9 proton, 368 alpha, 21 cluster decays and 25 spontaneous fissions, total 424
data from 573 initial experimental values, as explicit function of the total decay
energy Qt and kinetic Ek energy, the number of protons Zcl and neutrons Ncl of

276



Unified Description of the Decays and Spontaneous Fission

1 1 0 1 0 0
1 0 - 1 6
1 0 - 1 3
1 0 - 1 0
1 0 - 7
1 0 - 4
1 0 - 1
1 0 2
1 0 5
1 0 8

1 0 1 1
1 0 1 4
1 0 1 7
1 0 2 0
1 0 2 3
1 0 2 6
1 0 2 9
1 0 3 2
1 0 3 5
1 0 3 8

 H a l f L i f e E x p t  H a l f L i f e T h  

Ye
ars

E k  [ M e V ]
F i g  3 .  H a l f L i f e   e x p e r i m e n t  a n d  m o d e l

Figure 3. The experimental and theoretical half-life of the nuclei as a function of the
kinetic energy.

daughter product, the number of protons Z and neutrons of mother nuclei and
from a set of a = (ai, i = 1, . . . , 79) digital parameters:

Ht1/2(Z,N,Zcl, Ncl, Ek, Qt, a).

The result of this paper can be applied in the theoretical research of stability
islands problem (see for example the paper [28]) because the kinetic and total
energy of decay Ek, Qt can be calculated using the phenomenological model
for nuclei masses [33, 34].

The bad accuracy in the description of 149 half-life data from [26] and [27]
data base is, probably, related to the fact that in our model the information about
the eccentricity of the nuclei was not used. In the next paper this problem will
be analyzed.
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