Level Structure of 30S of Astrophysical Importance in rp Reaction 29P(p,γ)30S

M. Bouhelal1, N. Azzeddine1, N. Chorfi1, F. Haas2

1Laboratoire de Physique Appliquée et Théorique, Université Larbi Tébessi, Tébessa 12022, Algérie
2IPHC, CNRS/IN2P3, Université de Strasbourg, F-67037 Strasbourg Cedex 2, France

The structure of proton-unbound 30S states is a key to understand the αp and the rp processes, as it plays a crucial role in the calculation of the 29P(p,γ) and 26Si(α,p) reaction rates. The spin-parity assignments of 30S strongly determine the thermonuclear 29P(p,γ)30S reaction rate at temperatures characteristic of explosive hydrogen burning in classical novae and type I x-ray bursts. Specifically, the rate had been previously predicted to be dominated by two low-lying, unobserved, levels in the Ex = 4.7-4.8 MeV region, with spin and parity assignments of 3^+ and 2^+. Recent experiments were performed to study the structure of 30S. The 30S J$^\pi$ values were inferred from also a comparison to the known decay schemes of the corresponding mirror states in 30Si.

We present, in our contribution, results for levels in 30S that are used for the 29P(p,γ) rp reaction rate calculations. The levels are calculated using the (0+1)ℏω PSDPF interaction, which is charge-independent Hamiltonian. The γ-decay lifetimes of 29P and 30S are also calculated. Based on experimental information on the 30S energy spectrum as well as for the mirror nucleus 30Si, the levels of excited states that are used to determine the 29P(p,γ)30S reaction rates are proposed.