Level Structure of ³⁰S of Astrophysical Importance in rp Reaction ${}^{29}P(p,\gamma){}^{30}S$

$\underline{\text{M. Bouhelal}}^1,$ N. Azzeddine 1, N. Chorfi 1, F. Haas 2

¹Laboratoire de Physique Appliquée et Théorique, Université Larbi Tébessi, Tébessa 12022, Algérie

²IPHC, CNRS/IN2P3, Université de Strasbourg, F-67037 Strasbourg Cedex 2, France

The structure of proton-unbound ³⁰S states is a key to understand the αp and the rp processes, as it plays a crucial role in the calculation of the ²⁹P(p, γ) and ²⁶Si(α ,p) reaction rates. The spin-parity assignments of ³⁰S strongly determine the thermonuclear ²⁹P(p, γ)³⁰S reaction rate at temperatures characteristic of explosive hydrogen burning in classical novae and type I x-ray bursts. Specifically, the rate had been previously predicted to be dominated by two low-lying, unobserved, levels in the Ex = 4.7-4.8 MeV region, with spin and parity assignments of 3⁺ and 2⁺. Recent experiments were performed to study the structure of ³⁰S. The ³⁰S J^π values were inferred from also a comparison to the known decay schemes of the corresponding mirror states in ³⁰Si.

We present, in our contribution, results for levels in ³⁰S that are used for the ²⁹P(p, γ) rp reaction rate calculations. The levels are calculated using the (0+1) $\hbar\omega$ PSDPF interaction, which is charge-independent Hamiltonian. The γ -decay lifetimes of ²⁹P and ³⁰S are also calculated. Based on experimental information on the ³⁰S energy spectrum as well as for the mirror nucleus ³⁰Si, the levels of excited states that are used to determine the ²⁹P(p, γ)³⁰S reaction rates are proposed.