Study of Dynamics of External Neutrons in Reactions ^{7,9,11}Li + ²⁸Si

V.V. Samarin^{1,2}, M.A. Naumenko¹

¹Joint Institute for Nuclear Research, 141980 Dubna, Russia

²Dubna State University, 141982 Dubna, Russia

The present work is devoted to studying light nuclei 7,9,11 Li. The probability density for the 11 Li nucleus calculated using Feynman's continual integrals method [1] is shown in Figure 1*a*. The dynamical approach based on the numeric solution of the time-dependent Schrödinger equation [2] is applied to the description of adiacatic and diabatic rearrangement of neutrons in reactions 7,9,11 Li + 28 Si (see Figure 1*b*, *c*) and to the calculation of total reaction cross sections [3].

Figure 1: (*a*) The probability density for the ¹¹Li nucleus (configuration ⁹Li + n + n) and the vectors in the Jacobi coordinates; neutrons and ⁹Li-core are denoted as small empty circles and large filled circles, respectively. The most probable configurations are ⁹Li + di-neutron (1) and the cigar configuration (2). (*b*, *c*) An example of the time evolution of the probability density for the external neutrons of ¹¹Li nucleus in the collision with ²⁸Si for $E_{cm} = 100$ MeV and impact parameter b = 8 fm. The radii of circumferences equal the effective radii of nuclei. The course of time corresponds to the panel locations (*b*, *c*).

The work was supported by the Russian Science Foundation (RSF), research project 17-12-01170.

References

- [1] V.V. Samarin, Nuclear Theory 36 (Heron Press, Sofia, 2017) 233-243.
- [2] V.V. Samarin, Phys. Atom. Nucl. 78 (2015) 128-141.
- [3] Yu.E. Penionzhkevich et al., Phys. Atom. Nucl. 80 (2017) 928-941.