Neutron Matter in Magnetar Crusts

Zh.K. Stoyanov1, Y.D. Mutafchieva1, N. Chamel2

1Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Soa, Bulgaria
2Institute of Astronomy and Astrophysics, Universite Libre de Bruxelles, CP 226, Boulevard du Triomphe, B-1050 Brussels, Belgium

The role of a superstrong magnetic field on dense homogeneous neutron matter at densities relevant for the crust of magnetars is studied. Because the influence of the magnetic field decreases with increasing density, we have focused on the dilute neutron liquid present in the inner crust. We have assumed that the magnetic field is strong enough to destroy superfluidity, and we have therefore neglected neutron pairing. In the presence of a magnetic field, the neutron liquid becomes partially spin polarized. We have found that the dependence of the energy density on the magnetic field is significant for magnetic fields expected in magnetars and for densities lower than the nuclear saturation density.

Acknowledgements

This work was supported by the Bulgarian Academy of Sciences through the program for support of young scientists under contract No. DFNP-17-163/03.08.2017.