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Prague, Horská 3a/22, 128 00, Prague 2, Czech Republic

Abstract. The neutrinoless double-β decay is a hypothetical rare nuclear de-
cay, which can be used for determining the neutrino-mass scale. The scheme
to use this decay for determining the neutrino-mass scale isone of few limited
methods possible to determine that. Nuclear matrix elementof this decay is an
important input to this method, and this matrix element cannot be determined
by experiment. I examine the validity of the transition density used for calcu-
lating the nuclear matrix element by comparing the experimental data and my
calculated result of the charge-change strength functionsof 48Ca and48Ti. The
nuclear wave functions are obtained by the quasiparticle random-phase approx-
imation. A new idea is proposed on the transition operator for this strength
function, and the data of those nuclei are reproduced well consistently. Reduced
half-life of a few nuclei to the neutrinoless double-β decay are shown.

1 Introduction

Since the discovery of the neutrino oscillation [1–4], the determination of the
neutrino mass is one of the most important subjects of modernphysics. The
finite neutrino mass implies the necessity of extension of the standard theory.
The neutrino mass may affect the mass distribution in the universe because of
the abundance of the neutrino, although the neutrino mass isextremely small.
The methods possible to determine the neutrino mass are quite limited, and one
of the methods is to use the neutrinoless double-β decay. If the neutrino is a
Majorana particle, the effective neutrino mass can be determined by the half-
life of the decay expected to be measured by the experiments and the transition
matrix elements obtained theoretically.

The nuclear part of the transition matrix element, called nuclear matrix ele-
ment, is difficult to establish, because the nuclear wave functions are necessary
for the medium to heavy nuclei for which approximation is essential. The nu-
clear matrix elements calculated by several methods and different groups are
distributed to a range of factor 2−3 [5]. Reduction of this uncertainty factor is
the most urgent task for the nuclear theory because of the necessity of the ac-
curate determination of the effective neutrino mass and thedesign of the future
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experimental setup for detecting the neutrinoless double-β decay. The nuclear
matrix element cannot be confirmed experimentally because the effective neu-
trino mass is unknown. Thus, the subject for the nuclear theorists is to improve
the reliability of the calculated nuclear matrix elements by examining and im-
proving the calculations.

In this paper, I check the charge-change transition densityof my calculation
indirectly by comparing the calculated and experimental charge-change strength
functions for48Ca→ 48Sc and48Ti → 48Sc [6]. This check is important, consid-
ering the difficulty of the confirmation of the nuclear matrixelements mentioned
above. It is, however, not trivial to reproduce the experimental charge-change
strength function because the data do not satisfy the Gamow-Teller sum rule.
The main new point of this paper is to clarify what those experimental data tell
us. The transition density is checked by addressing this issue.

2 Scheme to Determine Effective Neutrino Mass Using Double-βββ
Decay

The scheme is well established these days, e.g. [7]. The half-life of the neutri-
noless double-β decayT (0ν)

1/2 , nuclear matrix elementM (0ν), phase-space factor

G(0ν) arising from the emitted electrons, and the effective neutrino mass〈mν〉
have the relation

1
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wheregA denotes the axial-vector current coupling, andme is the electron mass.
The effective neutrino mass is defined by
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Uei is the matrix element of Pontecorvo-Maki-Nakagawa-Sakata(PMNS) ma-
trix [8] with i denoting the mass eigen state (e stands for the electron flavor).
The information on the PMNS matrix elements is exploited rapidly recently
by many neutrino-oscillation experiments leaving only fewunknown parame-
ters [9]. However, each eigen mass cannot be determined by those experiments,
therefore,〈mν〉 is unknown. IfT (0ν) is obtained by the experiments of the neu-
trinoless double-β decay, andM (0ν) andG(0ν) are calculated reliably,〈mν〉 can
be determined. IfUei is complex,〈mν〉 would be different from the expecta-
tion value of the electron-neutrino mass. In any case,〈mν〉 is thought to be a
neutrino-mass scale. In this paper, I always consider the ground-state-to-ground-
state decay, and the value ofG(0ν) is cited from Ref. [10] for my calculations.
M (0ν) in the quasiparticle random-phase approximation (QRPA) [11] is calcu-
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lated according to the equation

M (0ν)=
∑

bibf

∑

pp′

∑

nn′

〈pp′|V (r12, Ēb)|nn
′〉〈0+f |c

†
p′cn′ |bf 〉〈bf |bi〉

×〈bi|c
†
pcn|0

+
i 〉. (3)

The initial and final states are denoted by|0+i 〉 and|0+f 〉, respectively, and|bi or f 〉

is the intermediate state obtained by the proton-neutron QRPA, e.g. [12]1. Since
those states depend on the ground states, two complete sets of the QRPA solu-
tions are used. The proton (neutron) is denoted byp (n), andc†p (cp) stands for
the creation (annihilation) operator of the specified particle. V (r12, Ēb) is the
two-body transition operator of the neutrinoless double-β decay including the
neutrino potential [7] (r12 is the two-nucleon distance).V (r12, Ēb) used in my
calculation consists of the double Gamow-Teller and doubleFermi operators.
Ēb is the average energy of the intermediate states relevant toM (0ν).

3 Charge-Change Strength Function

3.1 Relation between Charge-Change Reaction and Double-β Decay

The charge-change reaction is caused by the strong interaction. Therefore, the
information obtained from this reaction is free fromgA, of which the effective
value appropriate for the approximate calculations is not yet established.

The Gamow-Teller strength function is obtained from the experimental charge-
change cross section of the (p, n) and/or (n, p) reaction(s) through the impulse
approximation and extrapolation of the cross section to thevanishing momentum
transfer [6]. The charge-change reaction is enhanced in the measurement at or
near the zero degree with the high incident energy. The Gamow-Teller strength
function is defined by

〈b|στ |0+〉 =
∑

np

〈p|στ |n〉〈b|c†pcn|0
+〉. (4)

As seen from this equation and Eq. (3), the transition density〈b|c†pcn|0
+〉 is

shared by those transition matrix elements, if the initial and final states of the
charge-change reactions are chosen suitably to the neutrinoless double-β decay.
The cross sections of48Ca(p,n)48Sc and48Ti(n,p)48Sc have been measured [6].
These reactions fit to the neutrinoless double-β decay of48Ca → 48Ti in the
above sense. Note that theJπ of the final states of the Gamow-Teller transition
is limited to1+, meanwhile there is no constraint on theJπ of the intermediate
states of the neutrinoless double-β decay because of the neutrino potential.

1For simplicity, I call this theory QRPA in this paper.
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3.2 Implication of Experimental Charge-Change Strength Function

The QRPA calculation was performed with the Skyrme (SkM∗ [13]) and con-
tact volume-type pairing interactions. The same interactions were used for the
Hartree-Fock-Bogoliubov (HFB) [14–17] calculations prior to the QRPA calcu-
lations. Figure1 shows the calculated and experimental Gamow-Teller (β-decay
like) transition, and Figure2 illustrates the analogous transition (β+-decay like)
of 48Ti.
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Figure 1. Experimental [6] (symbols) and calculated [19] (solid line) Gamow-Teller (β-
decay like) strength functions of48Ca(p, n)48Sc. The inset is a magnified figure of the
high-energy region.
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Figure 2. Experimental [6] (symbols) and calculated [19] (solid line) Gamow-Teller (β+-
decay like) strength functions of48Ti(n, p)48Sc.

6



Consistency Examinations of Calculations of Nuclear Matrix Elements of ...

I stress that the calculated strength functions satisfy thesum rule of the
Gamow-Teller transitions

SQRPA
β− − SQRPA

β+ = 24.638− 0.633 = 24.005, (48Ca),

SQRPA
β− − SQRPA

β+ = 15.257− 3.268 = 11.989, (48Ti).

The two terms of the upper equation stand for the summation ofthe Gamow-
Teller transition strengths of theβ-decay-like (48Ca→ 48Sc) andβ+-decay-like
(48Ca→ 48K) transitions, and the two terms of the lower equation are those of
48Ti → 48V and 48Ti → 48Sc. The exact values are 24 (48Ca) and 12 (48Ti).
The sum of the measured transition strengths of48Ca is 64±9 % of the sum-rule
value. Since the contribution of theβ+-decay-like transition is negative (not
measured in this experiment), the data cannot satisfy the sum-rule. Note also
that the tail of the experimental strength function of48Ca is decreasing. If the
measurement is extended to a higher-energy region, the sum rule would not be
satisfied.

There is another major discrepancy (other than the peak energies) between
the experimental and calculated transition-strength distributions. The calculated
strength function is larger than the experimental one inE < 12 MeV (48Ca→
48Sc) andE < 10 MeV (48Ti → 48Sc). In the higher-energy region, this relation
is inverted.

The reasonable explanation of the experimental data is to add another term
to the transition operator;

στ + αr2στ , (5)

where the constantα is determined so as to satisfy the height of the experimen-
tal strength function in the higher-energy region on average. I usedα = −0.03
fm−2 (48Ca→ 48Sc) and−0.0253 fm−2 (48Ti → 48Sc), and the results of Fig-
ures3 and4 were obtained. The experimental data in the lower-energy region
are well reproduced; this is the non-trivial achievement ofthe new idea. The
choice of the measurement angle and the incident energy doesnot constrain the
detail of the transition operator. Thus, the data imply thatthe transition oper-
ator includes ther-dependence (that second term is called the isovector spin
monopole operator [18]). My transition density is confirmed indirectly by this
reproduction of the data.

The analysis of Ref. [19] indicates that the mechanism of the improvement
is explained by the decomposition of the transition operator

στ + αr2στ =
{

1 + α〈r2〉n1f7/2+ α(r2 − 〈r2〉n1f7/2)
}

στ . (6)

The 〈r2〉n1f7/2 is the single-particle expectation value with respect to the exces-
sive neutron1 compared to the protons in the ground state of48Ca. The coordi-
nate operatorα(r2 − 〈r2〉n1f7/2) causes the so-called two-~ω jump. The zero-~ω

11f7/2 indicates the first f7/2.
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component is subtracted by the constant because the transition matrix element
of the wave functions in the coordinate space between the n1f7/2 and p1f7/2 is
equal to the expectation value under the isospin symmetry [18]. The constant
(1 + α〈r2〉n1f7/2) is an operator of the zero-~ω jump. Therefore, the strength
function in the lower-energy region is decreased, and that in the higher-energy
region is increased by that modified transition operator.
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Figure 3. Experimental [6] (symbols) and modified [19] (solid line) charge-change (β-
decay like) strength functions of48Ca(p, n)48Sc. The inset is a magnified figure of the
high-energy region.
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Figure 4. Experimental [6] (symbols) and modified [19] (solid line) charge-change (β+-
decay like) strength functions of48Ti(n, p)48Sc.

8



Consistency Examinations of Calculations of Nuclear Matrix Elements of ...

4 Reduced Half-Life

I discuss the reduced half-lifeR(0ν)
1/2 [5] defined by

T
(0ν)
1/2 =

R
(0ν)
1/2

〈mν〉2
. (7)

As seen from this equation,R(0ν)
1/2 is the theoretical quantity necessary for deter-

mining 〈mν〉 and also a substitute ofT (0ν)
1/2 not yet obtained for discussion. If

different approximate calculations are correct, theR
(0ν)
1/2 is unique because the

trueT (0ν)
1/2 and〈mν〉 are unique. Therefore,R(ν)

1/2 is useful for comparison of the
calculations with differentgA. This feature is particularly useful for my calcula-
tion because my values of the effectivegA are relatively small (∼ 0.4−0.5) [19]
as a result of the new method to determine the strength of the isoscalar pairing
interaction, with which the HFB ground state is not near the instability to the
QRPA excitations. Values between 1.27 and 1.0 are used forgA in many calcu-
lations of other groups; see e.g. [5] and references therein.R(0ν)

1/2 is calculated
by

R
(0ν)
1/2 =

m2
e

g4AG
(0ν)

∣

∣M (0ν)
∣

∣

2 , (8)

[see Eq. (1)].
The calculatedR(0ν)

1/2 are shown by Figure5 for three mother nuclei together
with those of other groups (the legends are indicated by Figure 6). My results
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Figure 5.R(0ν)
1/2 calculated by different methods and groups for48Ca,136Xe, and150Nd.

See Figure6 for the legends.
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are the largest values; the main reason is the smallness ofgA. Let us assume
that 〈mν〉 = 10 meV. With myR(0ν)

1/2 , T (0ν) is predicted to be 2×1029 years

for 48Ca. One can compare this half-life to the estimated age of theuniverse of
(12−14)×109 years [20]. The neutrinoless double-β decay is an extremely rare
decay.

5 Summary

I have calculated the charge-change strength functions of48Ca and48Ti for con-
firming the transition density for the calculation of the nuclear matrix elements
of the double-β decay. As a by-product, it has been found that the transition
operator implied by the experimental charge-change strength functions is a sum-
mation of the usual Gamow-Teller and isovector spin monopole operators. The
mechanism of the modification was also discussed on the basisof the configura-
tion of 48Ca. My charge-change transition density has been confirmed indirectly
by the reproduction of the experimental strength function.Considering the dif-
ficulty that the nuclear matrix element cannot be confirmed byexperiment, this
check is very important.

Subsequently, I have shown the calculated reduced half-life rather than the
nuclear matrix elements because my effective value ofgA is small. My values
of R(0ν)

1/2 are the largest in the calculations by different methods andgroups for
the three nuclei shown. For now there is no method to confirm those values.
One thing for sure under this uncertainty is that in any way the half-life to the
neutrinoless double-β decay is longer by many orders of years than the estimated
age of the universe. The task of the theorists is to accumulate the checks and
improvements of the calculations of the nuclear matrix elements for improving
the reliability.

IBM-2
QRPA, Chapel Hill
QRPA, Jyvaskyla
QRPA, Tubingen

QRPA, my cal.
GCM, Chapel Hill

GCM, Sendai
GCM, Madrid

SM, Madrid
SM, Mount Pleasant

SM, Tokyo

Figure 6. Legends of Figure5. The references are as follows:48Ca, [21] (QRPA
Tübingen); [23] (SM, Mount Pleasant); [24] (SM, Tokyo); [25] (IBM-2); [ 26] (GCM,
Madrid); [27] (GCM, Sendai); [28] (SM, Madrid); [29] (GCM, Chapel Hill); [19] (QRPA,
my calculation). 136Xe, [25] (IBM-2); [ 21] (QRPA, Tübingen); [30] (QRPA, Chapel
Hill); [ 27] (GCM, Sendai); [26] (GCM, Madrid); [28] (SM, Madrid); [23] (SM, Mount
Pleasant); [31] (QRPA, Jyvaskyla); current paper (QRPA, my calculation).150Nd, [25]
(IBM-1); [22] (QRPA, Tübingen); [30] (QRPA, Chapel Hill); [27] (GCM, Sendai); [26]
(GCM, Madrid); [32,33] (QRPA, my calculation). SM, GCM, and IBM stand for shell
model, generator-coordinate method, and interacting-boson model, respectively.
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