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Abstract. In this talk I discuss the possible use of two-particle transfer inten-
sities as a signature of sharp shape transitions. I first consider simple models of
phase transitions based on algebraic bosonic approaches, including the case of
shape coexistence, showing a dramatic change in the pair-transfer probabilities
in corrispondence of the critical points. Moving then to a microscopic descrip-
tion of both structure and reaction aspects, I consider as an example the complete
series of (t,p) reactions populating the isotope chain of even Zirconium nuclei,
to the ground state and to excited 0" states. One- and two-particle spectroscopic
factors derived from Monte Carlo Shell Model calculations are used, together
with the sequential description of the two-particle transfer reaction mechanism.
The calculation shows a clear signature for a shape phase transition between the
spherical ®®Zr and *°°Zr, which displays a coexistence of a deformed ground
state with an excited spherical 0T state. As a result one predicts a weak two-
particle cross section from the spherical *®Zr to the deformed ground state of
1007y, with instread a strong population of the spherical excited 07 state.

The values of the energy of the first 2% state, the ratio £4/E5 and the inten-
sities of the electromagnetic E2 transition connecting ground state and the first
excited 27 state have traditionally been used as order parameters for the shape
transitions taking place along a chain of isotopes (or isotones). The discrete
control parameter is in these cases given by the number of neutrons (or protons).
Two-particle transfer processes, in particular those populating in even-even nu-
clei the ground state and the other 07 states, can however provide an additional
and complementary clear-cut signature of the occurrence of such phase transi-
tions. In particular one expects at the critical point a sudden weakening of the
ground-to-ground pair transition process and a corresponding abnormally strong
population of one (or more) excited 07 states. The characteristic pattern of the
pair response should signal not only the occurrence of a shape phase transition,
but also the nature of this transition.

The essential quantity that characterizes the system from the pairing point of
view is given by the “pairing response”, namely the square of the matrix element
of the pair creation (or removal) operator Py = 3 [a;r.a;]oo (and similarly for
P_), connecting the ground state of a nucleus with N neutrons with all 0" states

*Work done in collaboration with J.A. Lay, L. Fortunato, T. Togashi, Y. Tsunoda and T. Otsuka
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Figure 1. Pairing response in 2°Pb for the neutron pair addition mode, connecting the
ground state of 2°®Pb with all 07 states in 2'°Pb. The unperturbed response is compared
to the one obtained within the particle-particle Tamm-Dancoff and RPA formalism. See
Ref. [2].

of nucleus with N42 (or N—2) neutrons (cf. for example Ref. [1]). For simplicity
we have considered two-neutron pair operators, but the same arguments would
be valid, with proper adjustments, for a proton pair or a proton-neutron 7" = 1
pair. A typical pairing response in illustrated in Figure 1, referring to the case
of pair addition in 2°%Pb. The response obtained using particle-particle Tamm-
Dancoff or RPA approximation is compared with the unperturbed one. As it is
clear from the figure, the inclusion of the residual pairing interaction is strongly
enhancing the transition to the ground state, depaupering correspondingly the
transition to the excited states. Notice only that the shell gap in the particle-hole
states generates the possible occurrence of a second collective state at higher
excitation energy (around 2/uw), namely the Giant Pairing Vibration.

The pairing response clearly depends on the pairing phase, so a different be-
havior is expected in the “pairing vibration” regime around closed shells and in
the “pairing rotational” regime in the open shell. An example of the ground-to-
ground pair strength connecting even Tin isotopes is shown in Figure 2. The cal-
culation, performed within the Hartree-Fock-Bogoliubov model with Skyrme in-
teraction SLy4 and surface-peaked pairing interaction, clearly displays the pair-
ing vibrational behavior around the A=100 and A=132 doubly closed shells and
the transition to the superfluid rotational behavior at middle shell. But the pair-
ing response is not only changing when the “pairing phase” changes. A variation
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Figure 2. Pair strength connecting the ground states along the chain of even Tin isotopes,
obtained in HFB with Skyrme interaction SLy4 and pairing interaction of surface-peaked
form. The three calculations refer to different approximation schemes. For details cf.
Ref. [3].

of the pair-transfer strength is also expected at the critical points associated to a
change of shape of the system along an isotope chain, for example from spheric-
ity to axially-symmetric deformation or to gamma-instability.

To illustrate this point different structure models can be used. A rather sim-
ple approach is based on the Interacting Boson Model, by describing series of
isotopes in terms of schematic hamiltonians that abruptly performs a transition
from U (5) to either O(6) or SU(3), i.e. from a spherical behavior to the situ-
ation of y-instability or deformed axial symmetry [4,5]. In the example shown
in Figure 3 the transition has been assumed to take place at number of boson
N = 9. Within the IBM the pair creation operator, in leading order, is given just
by the s’ operator and one can evaluate the corresponding pair addition intensi-
ties obtained by taking the square of the matrix element connecting the ground
state in system N with the ground and excited state in [V 4 1. These intensities
(for the full response) are shown in Figure 3 for both transitions (U (5) to O(6)
and U(5) to SU(3)). The figure displays a clear “anomaly” for the pair strength
across the change of phase. The pair strength, normally concentrated in the
ground-to-ground transition, appears completely fragmented in correspondence
of the critical situation, with the ground-to-ground transition that is drastically
reduced.

A different physical scenario is that of shape coexistence, where different
shape phases occur within the same nucleus and we may face the situation of
a (slow or rapid) progressive mixing of spherical and deformed states, eventu-
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Figure 3. Pairing response for the U(5)-O(6) transition (top row) and the U(5)-SU(3) tran-
sition (bottom row). Whereas near the dynamical limits U (5), O(6) and SU(3) transfer
essentially occurs between ground states (or to lesser degree to the beta-vibrational ex-
cited 0+ in the SU(3) limit), near the critical point N = 9, the transfer intensity is
fragmented over a large number of excited 0" states. Adapted from Ref. [4].
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Figure 4. Two-particle transfer intensities to the ground state and to the excited 0™ state
in the case of a sequence of isotopes in the presence of shape coexistence. From N = 4
to N = 5 there is the exchange of the spherical ground-state configuration with the
“intruder” deformed configuration (cf. text and upper inset).
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ally leading to the interchange of the dominant component of these states in the
ground state. Again we can have a first guess of the consequences of this situa-
tion on the pair-transfer processes within a simplified IBM-like framework. Fol-
lowing the idea of Ref. [6,7] we can assume for each system characterized by N
valence bosons a possible mixing of a “spherical” state obtained within an IBM
U(5) hamiltonian with another “deformed” 0% state obtained within a SU(3)
hamiltonian with N+2 bosons, microscopically originated by a 2p-2h core exci-
tation. In this case the pair creation operator will be in leading order given by
(st + s), since we can either add a valence-like boson or destroy the “hole-like”
boson. Assuming a sharp transition with increasing number of particles from
a fully spherical ground state to a fully deformed ground state (passing from
N = 4to N = 5, cf. inset in Figure 4), we obtain the pair transfer intensities
shown in Figure 4. As in the previous case a clear discontinuity appears at the
transition point. However, at variance with the previous case, the pair strength
is always practically concentrated in a single state, without the fragmentation
illustrated in Figure 3.

We move now from schematic models to a fully microscopic calculation, for
both reaction mechanism and structure. We take the case of (t,p) reactions on
even-mass Zirconium isotopes, where experimental data at £ = 20 MeV are
available [8] at least for the lighter systems, i.e. up to 6Zr(t,p). Novel interest
on Zirconium isotopes has arised from the recent shell model calculations [9]
that indicate in these nuclei a possible case of shape coexistence with a first
sharp transition occurring between ?2Zr and °°Zr (cf. Figure 5). The situation,
although much richer, seems therefore to basically resemble the schematic case
of shape coexistence displayed in Figure 4.

We have therefore calculated the two-particle trasfer probabilities across the
phase transition up to 19°Zr(t,p) to the ground and excited 0T states. In par-
allel with a detailed microscopic structure description, the reaction process has
been also described in microscopic terms. In particular the reaction mecha-
nism has been assumed as the “correlated” sequential single-particle transfer
through all intermediate states in the A+1 odd system. Optical models param-
eters have been taken as in Ref. [8] and single-particle wave functions for the
construction of the single-particle form factors have been generated within a
Saxon-Woods potential adjusted to yield the proper single-particle energy. This
reaction mechanism generates a dynamical dependence on each specific orbit
on which the pair is transferred. The transfer probabilities become therefore
sensitive not simply to the value of the “global” pair strength, but also to the
details of microscopic wave functions [11]. This is better evidenced in Figure 6
where the cross sections associated with single-particle orbits are reported in
the case of the “6Zr(t,p)?®Zr reaction. The collective effects in the pair trasfer
process comes from the correlations present in both initial and final states that
induce a coherent and constructive interference of all the sequential paths (cf.
Refs. [1, 10] and references therein). In our case this coherence is obtained by
using the two-particle and single-particle spectroscopic amplitudes provided by
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Figure 5. Upper frames: energy surfaces in the 3 — -y plane, showing the change of shape
from %8Zr to '°°Zr (circles indicate the position of the minima). Middle frame: energies
of the different O states, with the associated deformations indicated in the inset. Lower
frame: ground-state deformation for the different isotopes. Adapted from Ref. [9]

the Monte Carlo Shell Model calculation of Ref. [9]. The largest two-particle
amplitudes are reported in Table 1, but also the smaller contributions from the
other orbits, included in the model space, have been actually used in the reac-
tion calculation. The constructive effect of the residual pairing-like interaction

18



Two-Particle Transter Reactions

%7t(tp) " Zr @ 30 MeV

I 2
- — (25
2
—- (Oh;;)
Ol 2
10"E (1d,,)
r 2
- (1d,)
i — Correlated
= L i
£
S10’F =N E
g o 4 \ ]
B N / 7
° o / E
’\\ // \ P < R
- / AN
\ N v N
3 \/ o
10°F v =
C AN ]
- \ -
- \\ —— -
L P Ny i
\ N - \
0 45 90

0 (deg)

c.o.m.

Figure 6. Angular distribution for the reaction “°Zr(t,p)°®Zr at 30 MeV when the two
particles are transferred in a pure single-orbit configuration. The thick solid line gives the
result in the case of correlated wave function according to the two-particle amplitudes,
the largest being given in Table 1.

is evidenced by the enhancement of the correlated cross section with respect the
single particle estimates, as evidenced by Figure 6.

Figure 7 summarizes the results for the full sequence of transfer reactions.
The comparison with the experimental data [8] is done by reporting the value
of the differential cross section at the first maximum (excluding § = 0). The
overall behavior reproduces the experimental trend, when available. As ex-
pected from the amplitudes given in Table 1, in the case of *8Zr(t,p)'°°Zr the

Table 1. Two-particle transfer amplitudes for the different reactions, for the most relevant
single-particle orbits. For each case the largest component is bolded.

90-92 92-94 94-96 96-98 98-100 98-100 100-102

gs gs gs gs gs 07 gs
ds/2 0.74 0.86 0.86 0.13 0.0 0.16 0.08
s1/2 0.10 0.08 0.10 0.90 0.0 0.16 0.05
d3/2 0.13 0.18 0.16 0.07 0.0 0.90 0.04
h11/2 0.22 0.20 0.19 0.08 0.0 0.14 0.55
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Figure 7. Total integrated cross sections for (t,p) reaction on the different isotopes and
specific final states. Experimental values, when available, are also given [8].

calculation predicts a large population of the fourth 0% state in °°Zr, which
displays a “spherical” behavior as the target 8Zr(gs). Continuing beyond the
critical point, we predict again a relatively weak population of the ground state
in 190Zr(t,p)192Zr, although the reaction connects now two deformed systems
with practically the same deformation. In this case this is not due to a structure
effect (cfr. the large spectroscopic factors associated with the hy; /o orbit in Ta-
ble 1) but to the reaction mechanism that does not favor the transfer of a pair in
the hyy /5 single-particle level.
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