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Abstract. The SU(3) irreducible representations (irreps) are characterised by
the (λ, µ) Elliott quantum numbers, which are necessary for the extraction of
the nuclear deformation, the energy spectrum and the transition probabilities.
These irreps can be calculated through a code which requires high computa-
tional power. In the following text a hand-writing method is presented for the
calculation of the highest weight (h.w.) irreps, using two different sets of magic
numbers, namely proxy-SU(3) and three-dimensional isotropic harmonic oscil-
lator.

1 Introduction

The exact interaction among two individual nucleons is not yet known. There-
fore effective interactions are used in the variety of nuclear models, which all
aim to solve the nuclear many body problem. These interactions can be sorted
into three categories. The first one is the interaction of a nucleon with the mean
field created by the rest of the nucleons in the system. This mean field in the
SU(3) models is represented by a three dimensional (3D) isotropic harmonic
oscillator (HO) potential. The second category is the quadrupole-quadrupole
(Q · Q) interaction, which is used for deformed nuclei and it is the long range
part of the nucleon-nucleon potential [1]. The third category is the pairing force.
The Elliott SU(3) model [2–4] is using the 3D isotropic HO potential as the lead-
ing interaction and the quadrupole-quadrupole (Q ·Q) interaction as a secondary
term, which creates deformation. Hereafter the capital letter Q will be used for
the whole nucleus, while q will denote the single particle operator.

The SU(3) algebra has two quantum numbers, namely (λ, µ). These num-
bers are sufficient for defining the eigenvalue of the SU(3) second order Casimir
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operator (par. 7.2.3. of [5])

< C
(2)
SU(3) >= λ2 + µ2 + λµ+ 3(λ+ µ). (1)

This operator is related to the Bohr-Mottelson deformation variable γ through
[6]

γ = tan−1(

√
3(µ+ 1)

2λ+ µ+ 3
). (2)

Furthermore the Casimir operator is connected with theQ·Q interaction through
(par. 7.1.5. of [5])

Q ·Q = 4C
(2)
SU(3) − 3L2, (3)

where L is the angular momentum. A basic SU(3) Hamiltonian is

H = H0 −
1

2
χQ ·Q, (4)

with χ being the strength of the Q ·Q interaction and

H0 =

A∑
i=1

(
p2i
2m

+
1

2
mω2r2i ) .

Therefore the (λ, µ) quantum numbers are crucial for defining the deformation
and the energy of the nucleus.

2 Hand-Writing Method for the Highest Weight Irreps of SU(3)

The procedure for the calculation of SU(3) irreps involves Gel’fand-Tsetlin tri-
angles and it is described very well in ref. [7]. This reference is accompanied
by a code, which reproduces all possible irreps. But if one wants simply the
h.w. irrep for a nucleus without running the code, it is safe to use the following
method.

Let n = nx+ny+nz be the total number of quanta for the isotropic 3D-HO
problem. The eigenfunctions of the 3D isotropic HO problem, i.e.

H =
∑

i=z,x,y

(
p2i
2m

+
1

2
mω2x2i )

in the Cartesian coordinate system are |nz, nx, ny〉. For n = 3, 10 orbitals of
this type emerge (thus the corresponding algebra is U(10)):

|1〉 = |3, 0, 0〉 , |2〉 = |2, 1, 0〉 , |3〉 = |2, 0, 1〉 , |4〉 = |1, 2, 0〉 , |5〉 = |1, 1, 1〉 ,
|6〉 = |1, 0, 2〉 , |7〉 = |0, 3, 0〉 , |8〉 = |0, 2, 1〉 , |9〉 = |0, 1, 2〉 , |10〉 = |0, 0, 3〉 .

The order of the orbitals is very important for getting the right results. First
comes the orbital with nz = n, followed by the orbitals |2〉 , |3〉, which have
nz = n − 1. Among them, |2〉 gains priority against |3〉, because it has more
quanta in the x-axis. Similar rules apply to the orbitals |4〉 , |5〉 , |6〉 etc.
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2.1 The Gel’fand-Tsetlin triangle

Each orbital can be occupied by two protons (neutrons). The question is how k
particles are distributed intoN orbitals? There is a variety of combinations, each
of them leading to an irrep characterised by a set of (λ, µ) quantum numbers of
SU(3). In many cases multiple different distributions result to the same irrep.
Mathematically the way to explore all these distributions is the Gel’fand-Tsetlin
pattern [8]. The pattern is simply a set of numbers, arranged in a triangular
shape, following a basic rule: the numbers must not increase along all the red
and green parallels of Figure 1. Each combination of numbers that does satisfy
this simple rule corresponds to a particle distribution.

For the U(10) algebra the Gel’fand-Tsetlin (GT) triangle is an equilateral tri-
angle, filled with 10 numbers on each side (for e.g. Figure 2). These numbers can
be 0, 1 or 2 since each orbital can be occupied with up to 2 protons (neutrons).
Let start counting the horizontal lines i (with i = 1, 2, ..., N for a U(N) algebra)
of the triangle from bottom to top, so as the ith line to be filled with i numbers.
Let also Si to be the sum of numbers in each line, which equals to the number of
nucleons that have been placed up to the ith orbital. For instance S4 shows how
many nucleons have been placed in orbitals |1〉 , ..., |4〉. For k valence protons
(neutrons) the first k

2 numbers of the N th horizontal line are always 2, while
the rest numbers of the same line are always 0 (e.g. Figure 2–Figure 4). The
previous horizontal lines i = 1, 2, ..., N − 1 are filled with numbers so as along
all the red and green parallels of Figure 1 the numbers do not increase.

For the h.w. irrep the numbers along the first k
2 red parallels of Figure 1

are all equal to 2 and along the rest red parallels are equal to 0 (e.g. Figure 2).
The weight vector is ~w = (w1, w2, ..., w10). By definition w1 = S1, w2 =
S2 − S1, w3 = S3 − S2, etc. Each of these wi is the occupation number of the
ith orbital. Highest weight irrep has the maximum possible occupation number
(wi = 2) for the first k

2 orbitals.

Figure 1. A typical Gel’fand Tsetlin triangle. Along all the parallels of the red and
green lines the numbers must not increase. For k particles the h.w. irrep results if all the
numbers along the first k

2
red parallels are 2 and along the rest red parallels are 0.
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2.2 Proxy highest weight irreps

Over the years there has been a doubt on which irrep reflects to the ground state
band. The two candidates are the h.w. irrep and the one with the largest eigen-
value of C(2)

SU(3), oftenly called leading irrep. From one side the eigenvalue of

the C(2)
SU(3) operator in eq.(3) is a measure of Q ·Q interaction, which minimises

the energy. Therefore the argument is that the irrep with the greatest eigenvalue
of C(2)

SU(3) gives the lowest energy. On the other side research on binding ener-
gies revealed, that the short range character of the nuclear force favors the irrep
with the most symmetric spatial wave function [9]. This irrep proves to be the
h.w. [10]. Furthermore this irrep predicts right the prolate-oblate shape phase
transition point [11].

So the question what is the meaning of the highest weight irrep arises. The
h.w. irrep is a specific filling order of the orbitals with nucleons. The orbitals
are characterised by the n⊥ = nx + ny quantum number. Each set with specific
n⊥ is created by n⊥ + 1 orbitals. For instance three orbitals (|4〉 , |5〉 , |6〉) have
n⊥ = 2.

The filling order can be better understood in two steps:

• First are sorted the orbitals with increasing value of n⊥ = 0, 1, 2, ..., n.
This favors the orbitals with maximum eigenvalue of the m = 0 compo-
nent of the quadrupole moment spherical tensor i.e.q0 = 2nz − n⊥. In
such a case the length of the z axis is preferred to be maximum, when
compared to that of the other two axes. So it favors the prolate cylindrical
shape.

• Secondly inside each block with specific n⊥ priority is given to one axis,
let it be named x (the axes x and y in cylindrical symmetry are indistin-
guishable), so as the length of the x axis to be maximum, when compared
to that of the y axis. This ordering favors triaxiality. In general the h.w.
irrep favors deformation.

The proxy-SU(3) symmetry has been recently proposed in refs. [11, 12]. An
approximation is made, in order to restore the SU(3) symmetry, destroyed by
the spin-orbit (l · s) interaction. Because of this approximation, the intruder
orbitals invading a nuclear shell from above are replaced by orbitals bearing
similar quantum numbers, which however have one less quantum in the z-axis.
The resulting proxy-SU(3) shells are 28-48, 50-80, 82-124,...

As an example, the calculation for 72
34Se38 will be presented. The 34 protons

lie in the shell 28-48, thus this nucleus has 6 valence protons. The corresponding
GT triangle is in Figure 2. Thus ~w = (2, 2, 2, 0, 0, 0, 0, 0, 0, 0). This means
that the orbitals |1〉 , |2〉 , |3〉 are occupied with 2 protons each, while the rest
are empty. The next step is to sum the number of quanta in each of the three
Cartesian axes:

∑
nz = 2 ·3+2 ·2+2 ·2 = 14,

∑
nx = 2 ·0+2 ·1+2 ·0 = 2

and
∑
ny = 2 · 0 + 2 · 0 + 2 · 1 = 2. The results (14, 2, 2) have to be arranged
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Figure 2. GT triangle for 6 valence particles in U(10), for the h.w. irrep. Along the first
6
2
= 3 red parallels of Figure 1 all the numbers are 2, while in the rest red parallels the

numbers are 0. This placement results to the h.w. irrep.

in decreasing order, in order to represent the quantum numbers [f1, f2, f3] of the
U(3) symmetry, i.e.[f1f2f3] = [14, 2, 2]. The last step is to use the relations

λ = f1 − f2, µ = f2 − f3. (5)

Finally the proton irrep is (λ1p, µ1p) = (12, 0).
The 38 neutrons lie again in the 28-48 shell, which means that this nucleus

has 10 valence neutrons. The corresponding GT triangle is Figure 3. Thus
the weight vector is ~w = (2, 2, 2, 2, 2, 0, 0, 0, 0, 0). So the valence neutrons
occupy the first five orbitals: |1〉 , |2〉 , ..., |5〉. The summation of quanta gives∑
nz = 2·3+2·2+2·2+2·1+2·1 = 18,

∑
nx = 2·0+2·1+2·0+2·2+2·1 = 8

and
∑
ny = 2·0+2·0+2·1+2·0+2·1 = 4. Therefore [f1, f2, f3] = [18, 8, 4].

The neutron irrep is (λ1N , µ1N ) = (10, 4).

Figure 3. GT triangle for 10 valence particles in U(10), for the h.w. irrep.
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Then the total proxy-SU(3) h.w. irrep is

(λ1, µ1) = (λ1p, µ1p) + (λ1N , µ1N ), (6)

which for 72
34Se38 is (22, 4). Using eq. (2) for this irrep gives γ = 9.64◦. Since

this value is much lower than 30◦, the nucleus in such a state is prolate.

3 Comparison of the H.W. with the Leading Irrep

In the previous example in 72
34Se38 it became clear that the 10 valence neutrons

occupy orbitals |1〉 , |2〉 , |3〉 , |4〉 , |5〉. This irrep is simultaneously h.w. and lead-
ing, because it happened to have the greatest eigenvalue of the C(2)

SU(3).
It is interesting to see what happens if 2 more neutrons are added: 74

34Se40.
In this case the h.w. irrep is being derived if the 12 valence neutrons occupy the
first 6 orbitals |1〉 , ..., |6〉. The outcome is (λ, µ) = (12, 0). The eigenvalue of
the second order Casimir operator, as defined in eq. (3) is:

C
(2)
SU(3) = 180, for h.w. irrep.

But for 12 particles in U(10) there is another irrep (leading), which has a greater
eigenvalue for the above operator. This irrep has (λ, µ) = (4, 10) and

C
(2)
SU(3) = 198, for leading irrep.

The weight vector of the corresponding GT triangle (Figure 4) is
~w = (0, 0, 0, 0, 2, 2, 2, 2, 2, 2), which means that the 12 particles are now dis-
tributed in orbitals |5〉 , |6〉 , |7〉 , |8〉 , |9〉 , |10〉. Following the procedure for the
extraction of the irrep one gets that

∑
nz = 4,

∑
nx = 14,

∑
ny = 18.

These summations are an approximate measure for the length of each axis,
since in the HO mean field potential using the Virial Theorem it is derived that
< x2 >= ~

mω (
∑
nx + 1

2 ). Thus the nucleus in this irrep has two axes (x, y)

Figure 4. GT triangle for 12 valence particles in U(10), for the leading irrep.
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elongated, when compared to the z axis. Obviously this state corresponds to an
oblate shape. As a result the leading irrep predicts a prolate-oblate shape tran-
sition in the mid shell. But it is well known through experimental data that the
prolate-oblate shape transition occurs after mid shell regions.

It is convenient now to compare the particle distributions of the leading irrep:

|1〉 , |2〉 , |3〉 , |4〉 , |5〉 , 10 valence particles in U(10) for both h.w. and leading,

|5〉 , |6〉 , |7〉 , |8〉 , |9〉 , |10〉 , 12 valence particles in U(10) for leading irrep.

It seems that, by following the leading irrep, the addition of the 2 more neu-
trons in orbital |6〉, causes a huge displacement of 8 particles from the orbitals
|1〉 , |2〉 , |3〉 , |4〉 to the orbitals |7〉 , |8〉 , |9〉 ,|10〉. So the leading irrep is accom-
panied by tremendous particle rearrangements in the orbitals, every time 2 more
particles are added in the shell.

On the contrary the h.w. irrep is not causing any particle displacements.
Since the 10 particles have already occupied the orbitals |1〉 , ..., |5〉, the addi-
tional pair of 2 neutrons is being placed to one of the orbitals |6〉 , ..., |10〉, which
is furthermore compatible with the GT triangle. Among the possibilities which
respect the GT pattern and cause no particle displacements of the 10 previous
neutrons, the chosen one is that of the greatest value of the C(2)

SU(3).
To conclude, although the leading irrep would result to a lower energy it

seems that it is blocked by the previously placed particles. Indeed the prolate-
oblate shape transition after the mid shell indicates, that the particles follow a
smooth distribution in the orbitals, without serious rearrangements.

4 Shape Coexistence

Shape coexistence appears when a nucleus has two low lying 0+ energy bands
close to each other, each of them exhibiting a different shape. The lowest in
energy is the ground state band and the other is the excited one. Much experi-
mental and theoretical work has focused on this phenomenon and research is still
ongoing. The review articles [13, 14] present much of this effort. The leading
theoretical approach for shape coexistence up to date is via particle-hole exci-
tations [15]. This method is very successful in nuclei with Z (proton number)
being a magic number, but in open shell regions the particle excitation mecha-
nism cannot be the explanation (page 1486 of [13]).

It is remarkable that experimental manifestations of shape coexistence (see
Figure 8 of [13]) stop suddenly at a proton or neutron harmonic oscillator magic
number, i.e.2, 8, 20, 40, 70, 112, 168, 240,... The best examples are Figure 9
from ref. [13] and Figure 3.10 from [14]. These figures present the energies of
the various bands versus the mass or neutron number for the isotopic chains of
Hg and Sn. Two observations become obvious: firstly that the excited 0+ band
of shape coexistence stops suddenly that 110 neutrons for Hg (just before the HO
shell closure) and at 70 neutrons for Sn (HO shell closure) and secondly that the
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minimum of the excited band is at 104 for Hg and at 66 neutrons for Sn, both of
them being the mid shell regions of 82-126 and 50-82 shells respectively. Thus
both magic numbers Proxy and HO should be considered for the explanation of
shape coexistence. The irreps for the two sets for 28-50 shell are displayed in
Table 1.

The previous hand-writing method is suitable for the calculation of the h.w.
irrep, which corresponds to the ground state band. Another excited band can
indeed be the outcome of particle-hole excitations. For instance, in 72

34Se38, pro-
ton excitation in the SU(3) glossary (not in the Shell Model) means that the 6
valence protons do not anymore occupy the orbitals |1〉 , |2〉 , |3〉, but possibly
the |1〉 , |2〉 , |4〉. In such a case the proton irrep is (6,6). A pair of particles
can even be excited into the next major shell, as it is assumed in the review
articles [13, 14]. But an alternative irrep can also be extracted without parti-
cle excitations. This can be achieved by considering an alternative set of magic
numbers. Instead of using the 28-48 shell, one can use the 20-40 shell. Thus 8
additional particles participate in the Q ·Q interaction.

From a theoretical point of view one may wonder why, to use the harmonic
oscillator magic numbers. The answer is that the algebraic Q · Q interaction is
originally introduced through its action in the space of orbitals with the same
total number of quanta providing the HO magic numbers. Further insight can
be gained by looking at the definition of the qm,m = −2,−1, 0, 1, 2 operators
(chapter 4 of [16]). If aj , a

†
j , j = z, x, y are the destruction and creation 3D HO

operators (eq. 3.1 of [1]) then:

q2 = −
√
6

2
(nx − ny)∓

√
6

2
i(a†xay + a†yax), (7)

q±1 = ∓
√

3

2
(a†zax + a†xaz ± i(a†zay + a†yaz)), q0 = 2nz − nx − ny. (8)

The above are combinations of a†a operators, so every time an a operator de-
stroys one quantum, the a† places it in an other axis and finally the total number
of quanta is conserved. This is the reason why they algebraic q · q interaction
has matrix elements only among orbitals with the same n. But orbitals with the
same n occur among HO magic numbers (0, 2, 8, 20, 40, 70, 112, ...)

Table 1. (λ, µ) of the highest weight irreps for two sets of magic numbers.

Particle number HO Proxy Particle number HO Proxy

28 (10, 4) (0, 0) 40 (0, 0) (12, 0)
30 (10,4) (6,0) 42 (8, 0) (6, 6)
32 (12, 0) (8, 2) 44 (12, 2) (2, 8)
34 (6, 6) (12, 0) 46 (18, 0) (0, 6)
36 (2, 8) (10, 4) 48 (18, 4) (0, 0)
38 (0, 6) (10, 4) 50 (20, 4) (0, 0)
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In the shell model it is the l · s interaction that has separated the 20-28 nu-
cleons from the 28-40 ones, and as a result the nuclear shell 28-50 emerged. But
there is a well known competition between the l · s interaction and the q · q: in
spherical nuclei l · s prevails, while in deformed nuclei q · q becomes dominant
(section 7.3.2, exercise 7.6 of [17]). Each type of interaction has its own magic
numbers: the l · s creates the 28-50 shell, while the q · q applies in the 20-40
one. The final outcome in the intermediate region is the result of the competi-
tion among these two extremes. A review article about magic numbers, in which
the role of the harmonic oscillator magic numbers is pointed out, can be found
in ref. [18].

5 Harmonic Oscillator Irreps

Using the shell 20-40, the valence protons and neutrons for 72
34Se38 are 14 and

18 respectively.
The GT triangle for the 14 valence protons is Figure 5. The weight vector is

~w = (2, 2, 2, 2, 2, 2, 2, 0, 0, 0) and so the protons occupy the seven first orbitals
|1〉 , ... |7〉. Thus

∑
nz = 2 · 3 + 2 · 2 + 2 · 2 + 2 · 1 + 2 · 1 + 2 · 1 + 2 ·

0 = 20,
∑
nx = 2 · 0 + 2 · 1 + 2 · 0 + 2 · 2 + 2 · 1 + 2 · 0 + 2 · 3 = 14

and
∑
ny = 2 · 0 + 2 · 0 + 2 · 1 + 2 · 0 + 2 · 1 + 2 · 2 + 2 · 0 = 8. The

U(3) quantum numbers are [f1, f2, f3] = [20, 14, 8] and (λ2p, µ2p) = (6, 6).
Following the same procedure for the 18 valence neutrons the GT triangle is
Figure 6 with ~w = (2, 2, 2, 2, 2, 2, 2, 2, 2, 0) and [f1, f2, f3] = [20, 20, 14]. So
(λ2N , µ2N ) = (0, 6). The final highest weight irrep is

(λ2, µ2) = (λ2p, µ2p) + (λ2N , µ2N ), (9)

which gives (6, 12) for this example. The corresponding γ value for this irrep is
39.83◦, so the nucleus is oblate.

Figure 5. GT triangle for 14 valence particles in U(10), for the h.w. irrep.
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Figure 6. GT triangle for 18 valence particles in U(10), for the h.w. irrep.

6 Conclusion

The HO magic numbers are proposed as a complementary set with the proxy
magic numbers, to derive the properties of the first excited 0+ band of shape
coexistence. This complementary set, from a theoretical point of view, emerges
naturally, as the set of orbitals among which the algebraic q·q interaction has non
zero matrix elements. Therefore the h.w. irreps by both HO and proxy magic
numbers should be combined to explain the intriguing “shape coexistence”. The
proposed algebraic approach does not involve particle-hole excitations across
the next major shell, thus it can also be used to predict open shell regions of
shape coexistence.

Acknowledgments

Helpful discussions with R. F. Casten and T. Mertzimekis are gratefully ac-
knowledged. Work partly supported by the Bulgarian National Science Fund
(BNSF) under Contract No. DFNI-E02/6.

References

[1] M. Harvey, In: Advances in Nuclear Physics, Vol. 1, (Plenum, New York, 1968).
[2] J.P. Elliott, Proc. Roy. Soc. Ser. A 245 (1958) 128-145.
[3] J.P. Elliott, Proc. Roy. Soc. Ser. A 245 (1958) 562-581.
[4] J.P. Elliott and M. Harvey, Proc. Roy. Soc. Ser. A 272 (1963) 557-577.
[5] J.P. Draayer et al., Algebraic Approaches to Nuclear Structure (Harwood, 1993).
[6] O. Castanos et al., Z. Phys. A 329 (1988) 33-43.
[7] J.P. Draayer et al., Comp. Phys. Commun. 56 (1989) 279-290.
[8] Jess A. De Loera et al., Discrete Comput. Geom. 32 (2004) 459-470.
[9] P. Van Isacker, D.D. Warner and D.S. Brenner, Phys. Rev. Let. 74 (1995) 23.

[10] D. Bonatsos et al., arXiv: 1712.04126v1 [nucl-th] (2017).

50

https://arxiv.org/abs/1712.04126


Highest Weight SU(3) Irreps for Nuclei with Shape Coexistence

[11] D. Bonatsos et al., Phys. Rev. C 95 (2017) 064326.
[12] D. Bonatsos et al., Phys. Rev. C 95 (2017) 064325.
[13] K. Heyde and J.L. Wood, Rev. Mod. Phys. 83 (2011) 1467-1521.
[14] J.L. Wood et al., Phys. Rep. 215 (1992) 101-201.
[15] K. Heyde et al., Phys. Lett. 155B (1985) 303-308.
[16] H.J. Lipkin, Lie groups for pedestrians (Dover Publications, 2002).
[17] W. Greiner and J.A. Maruhn, Nuclear Models (Springer, Berlin, 1996).
[18] O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61 (2008) 602-673.

51


