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Abstract. The tensor force effect on the nuclear structure properties for Si iso-
topes is studied within the self-consistent Hartree-Fock-Bogoliubov approach.
The Skyrme energy density functional has been considered in the particle-hole
channel, while the zero range delta-interaction has been employed in the particle-
particle channel. In order to correctly treat the pairing correlation, particle-
number projection was carried out by the Lipkin-Nogami method. Rotational
correction as approximate angular momentum projection is also introduced in
order to restore the rotational symmetry. The bulk properties like binding en-
ergy, two-neutron separation energy and charge radius are thus investigated with
and without tensor force and compared with recent experimental data. To study
the tensor effect on the shape evolution, the potential energy curves are dis-
played and discussed.

1 Introduction

The tensor force is an important and necessary ingredient of the nucleon-nucleon
interaction and has a crucial influence on the nuclear structure. It was originally
included as part of Skyrme effective zero-range nucleon-nucleon interaction, 60
years ago [1]. However, it has been neglected in the fitting process of most
mean-field forces due to its complexity. In the last decade, this force has re-
ceived renewed interest due to its very specific effect on nuclear spectra [2, 3].
It brings a correction to binding energies and to spin-orbit splitting that fluc-
tuates with the filling of shells. Its introduction seems, therefore, necessary to
improve the predictive power of mean-field-based methods. The purpose of this
work is the investigation of the tensor force effect on the structure of Si isotopes.
The Hartree-Fock-Bogoliubov theory is employed with three different Skyrme
interactions, namely, SLy4, SLy5 and SLy5T [4, 5].

2 Formalism

The HFB approximation can be derived using the variational principle starting
from an effective Hamiltonian given as:

H =
∑
ij

tija
†
iaj +

1

4

∑
ijkl

vijkla
†
ia
†
jalak, (1)
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where a†i and ai are the creation and annihilation operators of a particle in the
state |i〉. tij and vijkl are respectively the matrix elements of the kinetic en-
ergy operator and an antisymmetrized matrix elements of the effective nucleon-
nucleon interaction. The ground-state wave function is considered to be the
vacuum of quasiparticles:

αi |Ψ〉 = 0,∀i (2)

defined by the canonical Bogoliubov transformation [6]:(
α
α†

)
=

(
U† V †

V T UT

)(
a
a†

)
. (3)

The ground state energy can be expressed in terms of the density matrix

ρij = 〈Ψ| a†jai |Ψ〉 , (4)

and the pairing tensor
κij = 〈Ψ| ajai |Ψ〉 , (5)

as [7, 8]:

E(ρ, κ) =
∑
ij

(tij − λ)ρji +
1

2

∑
ijlm

vijlmρliρmj +
1

4

∑
ijlm

vijlmκlmκ
∗
ij . (6)

The HFB equations are obtained by minimizing the ground-state energy with
respect to ρ and κ:(

h− λ ∆
−∆∗ −h∗ + λ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (7)

where Ek are the quasiparticle energies and λ is the chemical potential intro-
duced as a Lagrange multiplier to ensure an average particle-number conser-
vation. h and ∆, respectively, denote the mean-field Hamiltonian and pairing
potential.

As it is known, the deformed Hartree-Fock-Bogoliubov procedure destroys
the assumed particle-number, translational and rotational invariance of the wave-
function. In order to restore the particle-number symmetry, the Lipkin-Nogami
(LN) prescription has been considered [9–11]. The latter is an efficient method
to approximately restore the particle-number before the variation. The LN equa-
tions are obtained by replacing the HFB energy (6) with E [ρ, ρ̃]− λ2

〈
∆N̂2

〉
,

where
〈

∆N̂2
〉

=
[
N̂ −

〈
N̂
〉]2

and λ2 is a coefficient that depends on the
HFB wave-function. In practice, the LN method is implemented by only a
slight modification of the pairing-field and the Hartree-Fock potential accord-
ing to Ref. [12].

In the case of translation symmetry, we considered the simplest method
which consists in introducing the factor (1− 1/A) in the kinetic energy density
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expression as an approximate center-of-mass correction. The energy correction
from angular-momentum projection in the Gaussian-Overlap-Approximation
(GOA) for axially symmetric nuclei is given by: −∆J2

y/2I , where I is the mo-
ment of inertia [8]. This energy gain is due to the fluctuation of the angular
momentum which causes a zero point rotation.

For the Skyrme interaction the total energy of a nucleus is expressed as the
volume integral. It can be modeled by an energy density functional that is the
sum of five terms:

H (r) = HKin (r) +HSk (r) +HCoul (r) +HPair (r) +Hcorr. (8)

The first term corresponds to the kinetic energy density. Assuming time-reversal
symmetry, the Skyrme energy density functionalHSk takes the form: [13, 14]

HSk =
∑
t=0,1

Cρt ρ
2
t + C∆ρ

t ρt ∆ρt + Cτt ρt τt + CJt J2
t + C∇Jt ρt∇ · Jt, (9)

where t stands for the isoscalar (t = 0) or isovector (t = 1) channel. The
definitions of the various densities ρt, τt, and Jt, for each channel, can be found
in Refs. [15–17]. The coefficients Cρt = Cρt0 + CρtDρ

γ
0 are isoscalar density

dependent while all the others are real constants [18].
HCoul(r) is the Coulomb energy density involved for protons. This term

contains the direct and exchange contributions. While the former is treated
exactly, the Slater approximation is adopted for the exchange Coulomb en-
ergy [15]:

HCoul(r) =
e2

2
ρp (r)

∫
d3r′

ρp (r′)

|r− r′|
− 3

4
e2

(
3

π

) 1
3

ρ
4
3
p (r) . (10)

HPair(r) is the pairing energy density which reads:

HPair(r) =
∑
q

V q0
2

(
1− 1

2

ρ0(r)

ρc

)
ρ̃2(r), (11)

where V q0 (q = n, p) is the pairing strength, ρc = 0.16 fm−3 is the saturation
density and ρ̃(r) is the local pairing density [19].
HCorr is the sum of the correction terms derived from the restoration of the

broken symmetries.

3 Results and Discussion

As mentioned above, the Skyrme parameterizations SLy4, SLy5 and SLy5T have
been used to study the effect of the tensor force. While SLy4 does not contain
a tensor term, SLy5 includes the tensor term derived from the central part of the
Skyrme interaction. The SLy5T interaction, on the other hand, contains the pure
tensor term. In this interaction, the tensor force is added perturbatively to the
Skyrme SLy5 interaction by keeping its parameters unchanged.
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3.1 Binding energy

In Figure 1, the calculated binding energies per nucleon of Si isotopes in the
three Skyrme parameterizations are shown in comparison with the available ex-
perimental values of the new version of the Atomic Mass Evaluation AME16
[20]. One can see from the figure that all the curves show a rapid decrease
around a maximum obtained at the neutron number N = 16 which corresponds
to the most stable nucleus of the isotopic chain. It clearly appears that all the
effective interactions overestimate the binding energy along the isotopic chain.
Moreover, it is found that the SLy4 and SLy5 results are very similar while the
inclusion of the tensor term by the SLy5T interaction has the effect of increas-
ing the binding energy. The possible improvement of the agreement between
the theoretical binding energies and the experiment when the tensor term is in-
cluded in a Skyrme interaction has been discussed in several works. While in
some works it has been established that the binding energy is not greatly affected
by the tensor force, it has been shown in others that this force increases the de-
viation from the experiment. This may be due to the fact that the mass is among
the quantities which are adjusted in the fit [21].
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3.1 Binding energy

In figure 1, the calculated binding energies per nucleon of Si isotopes in the three
Skyrme parameterizations are shown in comparison with the available experi-
mental values of the new version of the Atomic Mass Evaluation AME16 [20].
One can see from the figure that all the curves show a rapid decrease around
a maximum obtained at the neutron number N = 16 which corresponds to the
most stable nucleus of the isotopic chain. It clearly appears that all the effective
interactions overestimate the binding energy along the isotopic chain. Moreover,
it is found that the SLy4 and SLy5 results are very similar while the inclusion of
the tensor term by the SLy5T interaction has the effect of increasing the bind-
ing energy. The possible improvement of the agreement between the theoreti-
cal binding energies and the experiment when the tensor term is included in a
Skyrme interaction has been discussed in several works. While in some works it
has been established that the binding energy is not greatly affected by the tensor
force, it has been shown in others that this force increases the deviation from the
experiment. This may be due to the fact that the mass is among the quantities
which are adjusted in the fit [21].
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Figure 1. Binding energies per nucleon of Si isotopes as a function of the neutron number.
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Figure 1. Binding energies per nucleon of Si isotopes as a function of the neutron number.

3.2 Two-neutron separation energy

Two-neutron separation energy is among the physical quantities indicating a
change in the structure of the nucleus. This quantity has been computed us-
ing the obtained ground-state binding energies for Si isotopes. The calculated
two-neutron separation energies, with the SLy4, SLy5 and SLy5T interactions
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Tensor force effect on the structure evolution of Si isotopes

3.2 Two-neutron separation energy

Two-neutron separation energy is among the physical quantities indicating a
change in the structure of the nucleus. This quantity has been computed us-
ing the obtained ground-state binding energies for Si isotopes. The calculated
two-neutron separation energies, with the SLy4, SLy5 and SLy5T interactions
are compared with the available experimental data in figure 2. From the Figure
it is seen that the theoretical results are in quite good agreement with the exper-
imental data when available. In general, a large fall in the separation energy is
observed at magic numbers. Except at N = 14, where an abrupt decrease in the
S2n value is evident, which indicates a neutron shell closure, the curves do not
show any sudden fall of the two neutron separation energies. This indicates that
there is no dramatic change in the isotope structure, and in particular a weak
shell closure effect at N = 20 and 28.

8 12 16 20 24 28 32
-5

0

5

10

15

20

25

30

35

40

S 2
n (

M
eV

)

N

 SLy5T
 SLy5
 SLy4
 Exp

Si

Figure 2. Two-neutron separation energy of Si isotopes as a function of the neutron
number.

3.3 Root-mean-square charge radii

The evolution of nuclear charge radii along isotopic chains reflects how the
mean-field of the protons changes when neutrons are added in the system. A
comparison of the calculated charge radii with measurements is displayed in
figure 3. It appears that the interactions with tensor terms (SLy5T) give better
descriptions than the interactions SLy4 and SLy5 without the pure tensor term.

5

Figure 2. Two-neutron separation energy of Si isotopes as a function of the neutron
number.

are compared with the available experimental data in Figure 2. From the Figure
it is seen that the theoretical results are in quite good agreement with the exper-
imental data when available. In general, a large fall in the separation energy is
observed at magic numbers. Except at N = 14, where an abrupt decrease in
the S2n value is evident, which indicates a neutron shell closure, the curves do
not show any sudden fall of the two neutron separation energies. This indicates
that there is no dramatic change in the isotope structure, and in particular a weak
shell closure effect at N = 20 and 28.

3.3 Root-mean-square charge radii

The evolution of nuclear charge radii along isotopic chains reflects how the
mean-field of the protons changes when neutrons are added in the system. A
comparison of the calculated charge radii with measurements is displayed in
Figure 3. It appears that the interactions with tensor terms (SLy5T) give better
descriptions than the interactions SLy4 and SLy5 without the pure tensor term.
Indeed, one can see that if the tensor force is switched off, the deviation becomes
more important in the direction of larger radii values. On the other hand, the the-
oretical curves show a parabolic shape typical of a shell closure aroundN = 14.
By increasing the number of neutrons, the charge radii increase up to N = 28
where we observe a kink which is a sign of sudden change of deformation.
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Indeed, one can see that if the tensor force is switched off, the deviation be-
comes more important in the direction of larger radii values. On the other hand,
the theoretical curves show a parabolic shape typical of a shell closure around
N=14. By increasing the number of neutrons, the charge radii increase up to N
= 28 where we observe a kink which is a sign of sudden change of deformation.
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Figure 3. Root-mean-square charge radii of Si isotopes as a function of the neutron
number.

3.4 Deformation

In order to investigate the shape evolution of silicon isotopes, the calculated
quadruple deformations have been listed in table 1 for SLy4, SLy5 and SLy5T
interaction, respectively. We note that the nuclear shapes obtained with the three
interactions are nearly the same. All parameterizations predict a spherical shape
for 22Si and 24Si, a sudden transition to prolate shape at 26Si followed by an
abrupt change at 28Si from the prolate to the oblate shape. This scenario repeats
itself from 28Si to 44Si: a spherical shape is predicted for 30Si to 38Si, a prolate
shape for 40Si, and an oblate shape for 42Si and 44Si. This indicates that the
N=28 shell closure disappears due to the deformation effect. The spherical shape
at 22Si and 34Si is expected because of the neutron closed shells N = 8 and N
=20. The same spherical shape might be also expected in 24Si and around 34Si
because two or four neutrons outside of the N = 8 and N=20 closed shells is not
enough to make a deformation. The shape of 28Si and 42Si is explained in some
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Figure 3. Root-mean-square charge radii of Si isotopes as a function of the neutron
number.

3.4 Deformation

In order to investigate the shape evolution of silicon isotopes, the calculated
quadruple deformations have been listed in Table 1 for SLy4, SLy5 and SLy5T
interaction, respectively. We note that the nuclear shapes obtained with the three
interactions are nearly the same. All parameterizations predict a spherical shape

Table 1. Quadrupole deformation parameter of Si isotopes calculated for SLy4, SLy5 and
SLy5T interactions.

β

Nucleus SLy4 SLy5 SLy5T
22Si 0.000 0.006 0.000
24Si 0.000 0.000 0.092
26Si 0.243 0.241 0.241
28Si -0.141 -0.142 -0.107
30Si 0.000 0.000 0.000
32Si 0.000 0.000 0.000
34Si 0.000 0.000 0.000
36Si 0.000 0.000 0.000
38Si 0.000 0.000 0.000
40Si 0.237 0.235 0.117
42Si -0.143 -0.145 -0.127
44Si -0.134 -0.134 -0.100
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for 22Si and 24Si, a sudden transition to prolate shape at 26Si followed by an
abrupt change at 28Si from the prolate to the oblate shape. This scenario repeats
itself from 28Si to 44Si: a spherical shape is predicted for 30Si to 38Si, a prolate
shape for 40Si, and an oblate shape for 42Si and 44Si. This indicates that the
N = 28 shell closure disappears due to the deformation effect. The spherical
shape at 22Si and 34Si is expected because of the neutron closed shells N = 8
and N = 20. The same spherical shape might be also expected in 24Si and
around 34Si because two or four neutrons outside of the N = 8 and N = 20
closed shells is not enough to make a deformation. The shape of 28Si and 42Si
is explained in some works by the fact that the tensor force has a large effect in
nuclei deepening the energy surfaces at oblate energy minima in these nuclei.

Thus the curves of the quadrupole deformation parameter show shape change
while no change appears on the curve of the two-neutron separation energy. This
could be an indication of shape coexistence, so that a dramatic change in nuclear
shape is accompanied by a small change in nuclear binding energy.

3.5 Potential-energy curve

To get more insight into the shapes of Si isotopes, we have plotted in Figure 4 the
binding energy curves as a function of quadrupole deformation parameter as ob-
tained with constrained HFB calculations for the different Skyrme interactions.
From the figure, where the energy of the spherical shape is taken as reference,
we can see that the SLy4 and SLy5 curves are very similar which means that
the contribution of tensor force, resulting from the central term of the Skyrme
interaction, is not important for any quadrupole deformation value. On the other
hand, one notices that the shape of the nuclei progressively evolves from a spher-
ical shape for 34Si to a soft shape with the appearance of a second minimum for
40−42Si. One then expects a shape coexistence in this region. When the tensor
force is added to the SLy5 interaction, the energy curves of the 40−42Si nuclei
become flat: the ground-state minimum becomes less pronounced and the shape
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Figure 4. Potential-energy curve of Si isotopes as a function of the neutron number.

4 Conclusion

In conclusion, we have analyzed the tensor force effect on the structure of even-
even Si isotopes by a Skyrme-HFB model. The different symmetries broken in
the mean-field level have been approximately restored. In the calculation, we
have chosen three different Skyrme interactions: SLy4 without tensor interac-
tion, SLy5 (with tensor correlation derived from the central term), and SLy5T
(with the pure tensor term). Starting from the proton-rich nuclei up to the
neutron-rich side, we have calculated binding energies per nucleon, two-neutron
separation energies, rms charge radii, and quadrupole deformations. The avail-
able experimental data are globally rather well reproduced. The similarity be-
tween the SLy4 and SLy5 results shows that the tensor term derived from the
central term of the Skyrme interaction does not play an important role for all
the studied nuclei, and can therefore be neglected. It is found that the inclusion
of tensor correlation added to the SLy5 force leads to modifications to the to-
tal binding energy and rms charge radius. All the considered interactions show
that the N=28 spherical shell closure is significantly weakened in Si nuclei. The
investigation of the potential energy curves suggests that the inclusion of the
triaxial degree of freedom may be required for more reliable predictions.
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coexistence disappears completely since there is no minimal energy in the pro-
late side. The behavior of the potential energy for 40Si and 42Si indicates that
the triaxial degree of freedom may play an important role in the description of
the studied nuclei.

4 Conclusion

In conclusion, we have analyzed the tensor force effect on the structure of even-
even Si isotopes by a Skyrme-HFB model. The different symmetries broken in
the mean-field level have been approximately restored. In the calculation, we
have chosen three different Skyrme interactions: SLy4 without tensor interac-
tion, SLy5 (with tensor correlation derived from the central term), and SLy5T
(with the pure tensor term). Starting from the proton-rich nuclei up to the
neutron-rich side, we have calculated binding energies per nucleon, two-neutron
separation energies, rms charge radii, and quadrupole deformations. The avail-
able experimental data are globally rather well reproduced. The similarity be-
tween the SLy4 and SLy5 results shows that the tensor term derived from the
central term of the Skyrme interaction does not play an important role for all
the studied nuclei, and can therefore be neglected. It is found that the inclusion
of tensor correlation added to the SLy5 force leads to modifications to the total
binding energy and rms charge radius. All the considered interactions show that
the N = 28 spherical shell closure is significantly weakened in Si nuclei. The
investigation of the potential energy curves suggests that the inclusion of the
triaxial degree of freedom may be required for more reliable predictions.
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