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Abstract. We discuss applications of nuclear and neutron matter equations of
state based on high-quality chiral few-nucleon forces. First, we review an inves-
tigation of the relation between the neutron skin of a nucleus and the difference
between the proton radii of the mirror pair with the same mass. Second, we
address neutron star masses and radii obtained from equations of state based
on most recent chiral nucleon-nucleon potentials up to fifth order of the chiral
expansion together with the leading chiral three-nucleon force. We focus on the
radius of a 1.4 M� neutron star, for which we predict values that are consistent
with most recent constraints.

1 Introduction

Although finite nuclei are the natural arena to test nuclear forces in the many-
body system, infinite matter is a suitable and convenient theoretical benchmark
for in-medium nuclear forces. In particular, the equation of state (EoS) of
neutron-rich matter, namely the energy per particle in isospin-asymmetric matter
as a function of density, plays an outstanding role in remarkably diverse situa-
tions including: neutron drip lines, neutron skins, and the structure of neutron
stars.

As we have done in all our recent endeavors, we apply high-quality few-
nucleon interactions derived from chiral Effective Field Theory (EFT). Respect-
ing the symmetry of (low-energy) QCD while employing degrees of freedom
appropriate for low-energy nuclear physics (nucleons and pions), chiral EFT is
a systematic approach to the development of nuclear forces which allows for
a controlled expansion and a quantification of the uncertainty at each order of
the perturbation theory. The reader is referred to, for instance, Ref. [1] for a
comprehensive review.

In this paper, we concentrate on two of our most recent investigations. The
first one concerns neutron and proton skins [2], for which we apply the EoS
developed in Ref. [3]. In the second part of the paper, we move to considerations
of neutron star radii [4]. For that purpose, we use the EoS developed in Ref. [5]
which employ most recent and improved chiral potentials [6].
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2 Proton Skins and Mirror Nuclei

Empirical information on neutron radii and neutron skins is limited and accom-
panied by considerable uncertainty (see, for instance, Ref. [7] and references
therein for a summary of empirical constraints obtained from a variety of mea-
surements [8–11]). Although future experiments [12] are planned which may
be able to probe the weak charge density in 208Pb and, possibly, in 48Ca, other
strategies to obtain related information are being investigated.

The possibility of extracting constraints on neutron skins from the knowl-
edge of proton radii alone, specifically those of mirror pairs, is proposed in
Ref. [13]. There, correlations between neutron skins and the slope of the sym-
metry energy are deduced using large sets of phenomenological interactions,
specifically 48 Skyrme functionals. Furthermore, a correlation is found between
the difference in the charge radii of mirror nuclei and the slope of the symme-
try energy. The study presented in Ref. [14] is similar in spirit but is based on
relativistic energy density functionals.

In Ref. [2], we have used microscopic EoS as opposed to phenomenological
ones in order to explore the relation between the neutron skin of a nucleus and
the difference between the proton radii of the mirror pair with the same mass.
The EoS are obtained in Brueckner-Hartree-Fock calculations [3] employing
high-quality nucleon-nucleon chiral potentials [1]. The microscopic equations
of state are then used in the volume term of a liquid-drop energy functional.
This makes the treatment of the volume term distinct from the one of a fully
phenomenological study. The estimated theoretical errors include uncertainties
due to variations of the cutoff in the range 450-500 MeV as well as an error
(added in quadrature) to account for the uncertainty originating from the method
we use to calculate the skins [7].

In the presence of perfect charge symmetry, the equality

Rn(Z,N) = Rp(N,Z) (1)

must hold for mirror nuclei. Then, from the definition of the neutron skin,

Sn(Z,N) = Rn(Z,N) −Rp(Z,N) , (2)

one can conclude, using Eq. (1), that

Sn(Z,N) = Rn(Z,N) −Rp(Z,N) = Rp(N,Z) −Rp(Z,N) ≡ ∆Rp . (3)

That is, the neutron skin of nucleus (Z,N) would be equal to the difference
between the proton radii of the corresponding mirror pair. If charge radii could
be measured accurately for mirror pairs in the desired mass range, then we could
obtain the neutron skin of the (Z,N) nucleus from Eq. (3) after appropriate
corrections are applied to account for charge effects.

In what follows, we pay particular attention to a specific range within medium
mass nuclei, namely A ≈ 48− 54, see Table 1. This is an interesting and timely
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Table 1. Proton skins, Sp, in the mass range 48-54.

Z A Sp (fm) Z A Sp (fm)

20 48 -0.181 ± 0.010 24 52 -0.048 ± 0.007
28 48 0.316 ± 0.021 28 52 0.169 ± 0.013
22 50 -0.112 ± 0.010 26 54 0.008 ± 0.006
28 50 0.238 ± 0.016 28 54 0.112 ± 0.013

choice because of the vicinity to 48Ca, whose neutron skin is likely to be the
object of future experimental investigations together with 208Pb based on parity-
violating electron scattering.

In Table 2, 3, and 4, we address the relation between neutron skins and ∆Rp
as defined in Eq. (3). Table 2 displays the neutron skin of the neutron-rich iso-
tones from Table 1 in relation to ∆Rp, with and without Coulomb effects.

It is insightful to explore the relation between ∆Rp and Sn(Z,N) for other
chains. In particular, we investigate if and how such relation differs, quantita-
tively, among chains with different masses. For that purpose, we consider in
Table 3 and 4 two isotopic chains, one of them in a mass range considerably
different than the one studied in Table 2.

We observe that, for similar values of ∆Rp, the corresponding values of
Sn(Z,N) are approximately the same, regardless Z and N . Also, in all three
cases the relation is approximately linear. It is important to stress that these rela-
tions are derived in a fundamentally distinct way as compared to those discussed
in Ref. [13]. The latter are obtained varying the parameters of Skyrme models

Table 2. Relation between the neutron skin of nucleus (Z,N), Sn(Z,N), and ∆Rp of
the corresponding mirror pair for the isotone chain N = 28. The values in paranthesis
are the results without Coulomb contribution (as a verification).

Z N Sn(Z,N) (fm) ∆Rp(fm)

20 28 0.181 ± 0.010 (0.229) 0.309 ± 0.023 (0.229)
22 28 0.112 ± 0.010 (0.162) 0.220 ± 0.019 (0.162)
24 28 0.048 ± 0.007 (0.103) 0.139 ± 0.016 (0.103)
26 28 -0.008 ± 0.006 (0.049 ) 0.066 ± 0.007 (0.049 )

Table 3. Relation between the neutron skin of nucleus (Z,N), Sn(Z,N), and ∆Rp for
the isotope chain Z = 20.

Z N Sn(Z,N)(fm) ∆Rp(fm)

20 22 0.015 ± 0.007 0.081 ± 0.008
20 24 0.073 ± 0.006 0.156 ± 0.014
20 26 0.128 ± 0.010 0.233 ± 0.019
20 28 0.181 ± 0.010 0.309 ± 0.023
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Table 4. Relation between the neutron skin of nucleus (Z,N), Sn(Z,N), and ∆Rp for
the isotope chain Z=10.

Z N Sn(Z,N) (fm) ∆Rp(fm)
10 11 0.031 ± 0.005 0.071 ± 0.005
10 12 0.090 ± 0.005 0.140 ± 0.011
10 13 0.143 ± 0.010 0.204 ± 0.012
10 14 0.195 ± 0.010 0.269 ± 0.014

(each model constrained to produce a chosen value of the neutron skin in 208Pb)
for a fixed mirror pair. Here, the question being explored is to which extent these
microscopic EoS might yield, within theoretical uncertainties, a unique relation
between Sn and ∆Rp.

We find that the parameters of the predicted linear relation,

Sn = a(∆Rp) + b , (4)

based upon the cases we have considered here, can be summarized as

a = 0.78 ± 0.05 , b = −0.0385 ± 0.0215 . (5)

3 The Radius of a Typical Neutron Star

The EoS of neutron-rich matter is fundamentally important for systems ranging
from the neutron skin (see previous section) to compact stars. In fact, the rela-
tion between the mass and the radius of neutron stars is uniquely determined by
the EoS together with their self-gravity, making these compact systems remark-
able testing grounds for both nuclear physics and general relativity. Following
the recent detection by LIGO of gravitational waves from two neutron stars spi-
raling inward and merging, additional interest and excitement has developed
around these most exotic systems. The LIGO/Virgo [15] detection of gravita-
tional waves originating from the neutron star merger GW170817 has provided
new and more stringent constraints on the maximum radius of a 1.4 M� neutron
star, based on the tidal deformabilities of the colliding stars [16].

Here, we will briefly present and discuss some of our recent predictions of
neutron star radii based on state-of-the-art nuclear forces [4]. The focal point
is the radius of a star with mass equal to 1.4 M� (the typical mass of a neutron
star), which we wish to predict with appropriate quantification of the uncertainty.

Chiral EFT is a low-energy theory and thus limitated in its domain of ap-
plicability. The chiral symmetry breaking scale, Λχ ≈ 1 GeV, limits the mo-
mentum or energy domains where pions and nucleons can be taken as suitable
degrees of freedom. Moreover, the cutoff parameter Λ appearing in the regula-
tor function suppresses high momentum components. Naturally, the amount of
suppression depends on the strength of the cutoff, namely, the magnitude of the
cutoff parameter Λ.
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Central densities in neutron stars can be as high as several times the density
of normal matter around saturation. As a consequence, the highest momenta in
stellar matter fall outside the reach of chiral EFT. As a guidance for how to ex-
trapolate chiral predictions to the high density domain, we note that, for a very
large number of existing EoS, the pressure as a function of baryon density (or
mass density) can be fitted by piecewise polytropes, namely functions of the
form P = αρΓ [17], where, in our notation, ρ denotes the baryon density.) We
then extend the pressure predictions obtained from the chiral EoS using poly-
tropes. We consider stellar matter with neutrons, protons, and leptons (electrons
and muons) in β equilibrium, and determine the fractions of each species using
conditions of β-stability and charge neutrality, see Ref. [4] for more details.

Next, we briefly describe the main features of the two-nucleon force (2NF)
we have employed in our recent work. Those are described in details in Ref. [6].

The NN potentials from Ref. [6] are constructed at five orders of chiral
EFT, from leading order (LO) to fifth order (N4LO). Because the same power
counting scheme and regularization procedures are applied across all orders, this
set of interactions is more consistent than previous ones.

Furthermore, in these new potentials the long-range part of the interaction
is fixed by the πN LECs as determined in the recent and very accurate analysis
of Ref. [18]. As a consequence, errors in the πN LECs can essentially be ig-
nored when addressing uncertainty quantification. Moreover, at the fifth order
the NN data below pion production threshold are reproduced with the excellent
χ2/datum of 1.15.

Due to the complexity of the three-nucleon force (3NF) at orders higher
than three, very often only the leading 3NF is retained. However, for the very
important part of the 3NF which describes the two-pion exchange, complete cal-
culations up to N4LO are actually feasible. As shown in Ref. [19], the formal
structure of the two-pion exchange 3NF is nearly the same at the third, fourth,
and fifth orders. One can then add the three orders of 3NF contributions and
parametrize them in terms of effective ci LECs. This is the procedure we have
adopted in constructing the EoS used in these present calculations, see Ref. [5]
for a detailed description. In our Brueckner-Hartree-Fock calculations of nu-
clear and neutron matter, we use the non-perturbative particle-particle ladder
approximation.

Note that no 3NF are present at leading and next-to-leading orders. Since
NN data cannot be described at a satisfactory precision level below the third
order, in what follows we will discuss predictions only at orders equal or above
the third (N2LO).

In Figure 1, we show the calculated total energy per particle in β-stable
matter at the third, fourth, and fifth orders of the 2NF together with the leading
3NF.

To perform continuation of the microscopic EoS to high densities, we em-
ploy our microscopic predictions up to about 2ρ0. We then attach polytropes
having different adiabatic indices, P (ρ) = αρΓ, imposing continuity of the
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Figure 1. Energy per particle in β-stable matter as a function of density at the indicated
orders for Λ = 450 MeV (left) and Λ = 500 MeV (right).

pressure. We vary the polytropic index between 1.5 and 4.5 (a range suggested
by the literature [17]), and these extensions are calculated up to about 3ρ0. At
this density, every polytrope is again joined continuosly with a set of polytropes
spanning the same range. In this way, we include a large set of possibilities, with
the EoS being “softer” or “stiffer” in one density region or the other, as it would
be the case if phase transitions (most likely to non-hadronic degrees of freedom)
were to take place.

This procedure, and the corresponding spreading of the pressure, is demon-
strated in Figure 2. Note that only combinations of Γ1 and Γ2 which can support
a maximum mass of at least 1.97 M�, are retained, to be consistent with the
observation of a pulsar with a mass of 2.01 ± 0.04 M� [20]. The mass and the
radius as a function of the central density are shown in Figure 3 for those poly-
tropic extensions consistent with a maximum mass of at least 1.97 M�. The
constraint of causality, requiring the speed of sound in stellar matter to be less
than the speed of light, is also implemented.

We then proceed to estimate the value and the uncertainty for the radius of a
1.4 M� star, see Ref. [4] for more details. For the radius of the 1.4M� star, we
obtain

RN3LO = (10.8 − 12.8) km , (6)

including truncation error, cutoff uncertainty, and of course the uncertainty orig-
inating from the polytropic extrapolation.

We find that the radius in this mass range is nearly insensitive to the ex-
tension at the larger densities, and shows only weak sensitivity to maximum
variations of the first polytropic index. In other words, the uncertainty reported
in Eq. (6) is relatively small given the huge uncertainty introduced in the pres-
sure by the polytropic continuation. Note that the central densities we predict for
the average-mass star are typically in the order of, and can exceed 3ρ0. These
densities are at or above the one marked by the yellow line in Figure 2, where
we see a very large spreding of the pressure. Clearly, this indicates that the ra-
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Figure 2. Spreading of the pressure at N3LO from extension with polytropes as explained
in the text. Left and right: Λ = 450 MeV and 500 MeV, respectively. The vertical
coordinate axis and the vertical yellow line mark the two matching points where different
EoS are joined. Only the combinations of polytropes which can support a maximum mass
of at least 1.97 M� are retained.

Figure 3. The neutron star mass (left) and the radius (right) vs. the central density at the
indicated chiral order. The cutoff Λ is fixed at 450 MeV. The various curves are obtained
with the polytropic extension as explained in the text. The purple curves are obtained
extending the predictions at N4LO, while the the red and the green curves are obtained
extending the predictions at N3LO and at N2LO, respectively.

dius responds to pressures at much lower densities than those at the center of
the star, consistent with earlier observations [21]. In summary, the radius of the
average-mass star is largely determined by the microscopic theory and is nearly
insensitive to the phenomenological continuations.

In Ref. [22], the authors determine the radius of a 1.4 M� neutron star to be
between 10.4 and 12.9 km. Most recently, from LIGO/Virgo measurements the
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radius of a 1.4 M� neutron star was determined to be between 11.1 and 13.4
km [15, 16]. Thus our chiral predictions are well within recent constraints.

4 Summary and Conclusions

We have summarized and discussed some of our recent results obtained from
microscopic EoS based on high-quality chiral nuclear forces together with the
leading chiral 3NF. As for the many-body method, we adopt the Brueckner-
Hartree-Fock approach to infinite matter.

In one application, we explored neutron skins and proton skins of mirror
nuclei. In another, we extended theoretical predictions of the EoS for beta-
equilibrated matter past a few times normal density using a family of polytropic
solutions. For the radius of a 1.4 M� neutron star, we explored the sensitiv-
ity of the predictions to the high-density extrapolation and confirmed that they
depend only weakly on the high-density continuation method. Therefore, the
predictions reflect the microscopic theory.

Work in progress and future plans include additional studies of the isovector
properties of our most recent microscopic EoS, and further systematic applica-
tions in neutron-rich systems, both at zero and finite temperature.

With regard to improving consistency at the level of the chiral expansion, it
must be noted that, although chiral EFT is presently the most fundamental and
internally consistent approach to nuclear forces, its implementation in the many-
body system presents serious challenges. Application of complete 3NF at 4th
and 5th orders is a problem of enormous complexity, but necessary for a proper
assessment of order-by-order convergence. At this time, we are encouraged that
these new (softer) chiral interactions, particularly with a cutoff of 450 MeV,
exhibit good perturbative behavior, as we have shown in Ref. [5], suggesting
that they may be suitable for nuclear structure applications.
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