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Abstract. We propose to benefit from a concept of the enthalpy in order
to include volume corrections to a nucleon rest energy, which are proportional
to pressure and absent in a standard Relativistic Mean Field (RMF) with point-
like nucleons. It is shown, how the EOS depends from nucleon sizes inside
NM. The course of the EoS in our RMF model agrees with a semi-empirical
estimate and is close to results obtained from extensive DBHF calculations with
a Bonn A potential, which produce the EoS stiff enough to describe neutron star
properties (mass–radius constraint), especially the masses of “PSR J16142230”
and “PSR J0348+0432”, most massive (∼ 2M�) known neutron stars. The
presented model has proper saturation properties, including good values of a
compressibility.

Taking into account thermodynamic effects of pressure in finite volumes, we
will describe how an energy per nucleon εA = MA/A and pressure evolves
with NM density % in an RMF approach [1–5]. The original Walecka version [1]
of the linear RMF in introduces two potentials: a negative scalar gSUS and
a positive vector UV = gV (U0

V , 0) fitted to a nuclear binding energy at the
equilibrium density % = %0. The EoS for this linear, scalar-vector (σ, ω) RMF
model [1, 2] match a saturation point with too large compressibility K−1 =

%2 d2

d%2 εA ∼ 550 MeV and is very stiff for higher densities, where the repulsive
vector potential starts to predominate the attractive scalar part. Nevertheless
RMF models produce, after the Foldy-Wouthuysen reduction, the good value of
a spin-orbit strength at the saturation density [1]. The dynamics of the potentials
in the RMF approach are discussed e.g. in four specific mean-field models [1–
4]. In the ZM model [3] a fermion wave function is re-scaled and interprets
a new, density dependent nucleon mass. It starts to decrease from % = 0 and
at the saturation point % = %0 reaches 85% of a nucleon mass MN . But the
nucleon mass replaced at the saturation point by a smaller value would change
the nucleon deeply inelastic Parton Distribution Function (PDF) [6], shifting
the Björken x ∝ (1/MN ). Such a shift means that nucleons will carry 15%
less of the Longitudinal Momentum (LM), what should be compensated by the
enhanced contribution from a meson cloud for small x < 0.3 to describe the
EMC effect [7,8] in the RMF. There is no evidence for a such huge enhancement
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[9] in the EMC effect for small x. Also the nuclear Drell-Yan experiments [10],
which measure the sea quark enhancement, we described [11] with a small 1%
admixture of nuclear pions and the MN unchanged. Thus the deep inelastic
phenomenology indicates that a change of the nucleon mass at the saturation
density is rather negligible. A nonlinear extension of the RMF model [4, 12]
assumes self-interaction of the σ-field with the help of two additional parameters
fitted to K−1 ∼ 250 MeV and an effective mass M∗N = MN + gSUS . These
modifications of a scalar potential give a softening of EOS with a good value
of compressibility. Modern RMF calculations [12, 13] have adjusted the EOS,
fitting more mesons fields (ρ for an isospin dependence) and including the octet
of baryons. The excluded volume correction were already discuss in [14] with
constant nucleon mass and radius.

We have proposed [15] to improve nuclear RMF models in a different way,
namely by taking into account volume contributions to a nucleon rest energy
instead of a constant nucleon mass and radius, used so far in standard RMF
models. Any extended object inside a compressed medium (like a submerged
submarine) needs an extra energy to preserve its volume. Thus from the “deep”
point of view, finite pressure correction should be taken into account in RMF
calculations with point-like nucleons, but also in the Quark-Meson Coupling
(QMC) model [17]. To describe that dependence of a nucleon rest energy in a
compressed medium we will adopt a bag model. Considering a role of finite
nucleon sizes in compressed NM, the simplest, original (σ, ω) model [1, 2] with
point-like nucleons, which is too stiff, will be extended to get clear conclusions.

For fixed pressure and a zero temperature it is easy to show (see a first para-
graph in a next section), that definitions of a chemical potential µ or a Fermi
energy, have the same energy balance as an average, single particle enthalpy.
An enthalpy contains in a homogenous medium an interesting term, a work of a
nuclear pressure pH in a nuclear/nucleon volume, which will be investigated. It
is the argument for our choice of a Gibbs free energy with independent pressure
pH in favor of a Helmholtz free one (here an internal energy) with the volume,
as an independent variable. Our results are independent [18] of that choice; like
expressions on a chemical potential µ in (2).

We will neglect nuclear pion contributions above the saturation point. Dirac-
Brueckner calculations show that a pion effective cross section, in the reaction
of two nucleons N + N = N + N + π, is strongly reduced at higher nuclear
densities above the threshold , also with RPA insertions to a self energy of N
and ∆ [19]. We restrict our degrees of freedom to interacting nucleons.

1 Nuclear Enthalpy

At the beginning, let us consider effects generated by a volume of compressed
NM. Start with A nucleons which occupy a volume VA = A/%. They have to
perform a necessary work WA = pHVA to keep a space VA inside compressed
NM against nuclear pressure pH

.
= −(∂MA/∂VA). Thus interacting nucleons
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should provide not only the nuclear mass MA, but rather the nuclear enthalpy

HA
.
= MA +WA = MA +A

pH
%

(1)

which contains, besides the nuclear mass as an internal energy, the necessary
work. Taking appropriate thermodynamical derivatives with respect to A, we
get following relations between chemical potential µ and the enthalpy,

µ
.
= (∂MA/∂A)

VA
≡ (∂HA/∂A)pH

= εA +
pH
%

= HA/A (2)

for A → ∞. Please note that the same relation with pressure fulfills a nucleon
Fermi energy

EF
.
=P 0

N (PF ) = (∂MA/∂A)
VA

= εA + pH/% = µ (3)

of a nucleon with a Fermi momentum PF ; well-known as the Hugenholtz-van
Hove (HvH) relation [18], also proven in the self-consistent RMF approach [20].

The relativistic nuclear dynamics of nucleons in a nucleus, described by
“light cone” momenta (P+

N , P
−
N ,P

⊥
N ), can be formulated [6, 7, 21] in the tar-

get rest frame, where PA = 0. In order to specify a total nuclear energy P 0
A

in compressed NM in a single particle approach, let us discuss a longitudinal
Momentum Sum Rules (MSR). Let’s focus our attention on the LM components
P+
N = P 0

N + PZ
N of A nucleons. The question is: do they add up to the inter-

nal energy MA or rather to the HA, greater then MA for positive pressure? To
proceed our question let us look at a LM distribution

fN (y) =

∫
d4PN

(2π)4
δ

(
y − AP+

N

P+
A

)
Tr
[
γ+G(PN , PA)

]
, (4)

with y = AP+
N /P

+
A , which gives a Lorentz invariant fraction of a nucleon LM

P+
N in the NM with a LM P+

A = P 0
A. This distribution is manifestly covariant

and is expressed by a single nucleon Green’s function [6] G(PN , PA) in the
nuclear medium, given e.q. in [1, 7]. The trace is taken over the Dirac and
isospin indices and finally [7, 22]

fN ( y) =
4

%

∫
SN (PN )d4PN

(2π)3
α δ(y −AP+

N /P
0
A); (5)

where a nucleon spectral function

SN = n(| PN |)δ(P 0
N −

√
M

∗
N

2
+ PN

2 − gV U0
V )

is given in the impulse approximation and n is the Fermi distribution. Such a
LM distribution [6], derived from matrix elements containing lower components
of a hadron wave function, includes a flux factor α = (1 +P 3

N/E
∗
N ) and thanks
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to this is properly normalized to the number of nucleons [21]. After integration
(5) the result is:

f(y) = 3/4)[P 0
A/(APF )]3[(APF /P

0
A)2 − (y −AEF /P

0
A)2],

where y takes the values determined by the inequality (EF−PF )/P 0
A < (y/A) <

(EF + PF )/P 0
A. Integrating the LM fraction y in NM
∫
dyyfN (y) =

AEF

P 0
A

= A
εA + pH/%

P 0
A

= 1, (6)

and using HvH relation (3) in a middle step we get the longitudinal MSR (6)
which gives a fraction of the nuclear LM taken by all nucleons [7,21]; therefore
equal 1.

Let us check it with the usual “on mass shell” choice: P 0
A = MA = AεA.

Then the MSR (6) is satisfied only at the saturation point where pH = 0 [7].
However, in the beginning we advocate to choose the enthalpy P 0

A = HA =
AεA + pHVA as a total nuclear energy. Taking (2) HA = Aµ we get

∫
dyyfN (y) =

AEF

P 0
A

=
AEF

HA
=
EF

µ
= 1.

Now the MSR (6) is always satisfied (3) thanks to the finite volume contribution
pHVA to the nuclear energy. Thus we will use enthalpies, as compact forms for
total rest energies of nuclear or nucleon (parton) system.

2 Nucleon Enthalpy

We will discuss in a bag model, whether the nucleon mass MN or rather a nu-
cleon enthalpy HN should be, eventually, constant - independent from the den-
sity inside the compressed medium. Such a question is absent in the standard
RMF, where nucleons are point-like with the constant mass MN independent of
pressure inside NM. In a compressed nucleon, partons (quarks and gluons) have
to do a work WN = pHVN to keep a space VN for a nucleon “bag”. It will
involve functional corrections to a nucleon rest energy, dependent from external
pressure with a physical parameter - a nucleon radius R. we introduce a nucleon
enthalpy HN with the nucleon mass Mpr modified in the compressed medium

HN (%)
.
= Mpr(%) + pHVN with HN (%0) = MN , (7)

as a “useful” expression for the total rest energy of a nucleon “bag”. Please
note, that “external” pressure pH used in (7) is, of course, identical with nuclear
pressure appearing in (1,2). Our volume corrections will change a nucleon rest
energy but also will diminish effectively a free space between nucleons for the
given nuclear density, what modifies an available space VA− = (VA − AVN )
and so nuclear pressure. Now pH

.
= −(∂MA/∂VA−)A. A total enthalpy HT

A =
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HA− + A(HN − MN ) and using (1,2,7) we arrive to the HvH relation with
extended nucleons.

HT
A/A = εA − (∂MA/∂VA−)A/% = εA + pH/% = EF ; (8)

2.1 The nucleon mass in the bag model in NM

Describing nucleons as bags, pressure will influence their surfaces [17, 23–26].
Finite pressure corrections to a mass can not be described clearly by a pertur-
bative QCD [27]. Let us discuss the relation (7) in the simple bag model where
the nucleon in the lowest state of three quarks is a sphere of a volume VN . Its
energy EBag is a function of the radius R0 with phenomenological constants -
ω0, Z0 [17] and a density dependent bag “constant” B(%) with B0 = B(%0).
We have [28]

E0
Bag(R0) =

3ω0 − Z0

R0
+

4π

3
B(%0)R3

0 ∝ 1/R0, (9)

The condition

pB = −
(
∂E0

Bag/∂VN
)
surface

= 0 (10)

for pressure inside a bag in equilibrium, measured on a surface, gives the rela-
tion between R0 and B, used in the end of (9). E0

Bag fits to the mass MN at
equilibrium pH = pB = 0. (E0

Bag differs from the MN by the c.m. correc-
tion [24]). In a compressed medium, pressure generated by free quarks inside
the bag [28] is balanced at the bag surface not only by intrinsic confining “pres-
sure” B(%) but also by nuclear pressure pH ; generated e.q. by elastic collisions
with other hadron [23, 25] bags, also derived in QMC model in a medium [17].
In equilibrium internal parton pressure pB (10) inside the bag is equal (cf. [17]),
on a bag surface, nuclear pressure

pH = pB =
3ω0 − Z0

4πR4
−B(%) → (B(%) + pH)R4 = const

and we get the radius depending from B + pH :

R(%) =

[
3ω0 − Z0

4π(B(%) + pH(%))

]1/4
. (11)

Thus, the pressure pH(%) between the hadrons acts on the bag surface similarly
to the bag “constant” B(%). A mass Mpr for finite pH(%) can be obtained from
(9,11):

Mpr(%) =
4

3
πR3 [4(B + pH)− pH ] = E0

Bag

R0

R
− pHVN . (12)

The scaling factor R0/R comes from a well-known model dependence (9)
(E0

bag ∝ 1/R0) in the spherical bag [28]. This simple radial dependence is
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now lost in (12) and responsible for that is the pressure dependent correction to
the mass of a nucleon given by the product pHVN . This term is identical with
the work WN in (7) and disappear for the nucleon enthalpy

HN (%) = E0
Bag

R0

R(%)
∝ 1/R(%). (13)

The nucleon radius R(%) reflects a scale of a confinement of partons. Generally,
for increasingR(%),HN (%) (13) decreasing, thus part of the nucleon rest energy
is transferred from a confined region VN to an remaining space VA− (8). For
decreasing R, the HN increasing; this allows the constant or increasing mass
Mpr (12). The constantR (13) require the workWN to keep the constant volume
at the expense of the nucleon mass Mpr (12). The internal pressure B(%), just
as the external pressure pH(%) (generated by an effective meson exchanges),
has the same origin [29] from an interaction of quarks. Therefore, increasing
pH(%) we can expect the corresponding decrease in B(%). The sum B(%) +
pH(%) weakly depends on density in GCM [26] or QMC models [17, 24] with a
reasonable stiff EOS, thus the bag radius remains about constant (11). It justify
the choice of the total nucleon rest energy HN , unchanged by an increasing NN
repulsion. Just opposite to the case with the constant nucleon mass Mpr = MN ,
which requires the increasing total energy HN (12,13) and a decrease of the
nucleon size.

3 Results and Discussion

We will compare two scenarios: (A) constant nucleon mass with decreasing
radius [16] and (B) constant nucleon radius with decreasing mass [15]. We
applied therefore following formulas (7,8) for nucleon mass Mpr inside NM in
scenario (B) decreasing with pressure:

Mpr(%) = MN − pH(%)VN , % ≥ %0
pH(%) = %2ε′A(%)/(1− %VN ).

(14)

In scenario (A) we have instead of decreasing mass the compression of the nu-
cleon volume accompanying with energy transfer ∆E from meson fiels, in order
to keep the nucleon mass constant.

To carry out calculations in scenario (B) we combine the Mpr dependence
(14) of pressure pH at the constant nucleon radius R = R0, with the following
standard (σ − ω) RMF equations [15, 16] for the energy εA in terms of the
effective mass M∗pr and energy transfer ∆E present only in scenario (A):

εqN (%) =
g2v

2m2
v

%+
m2

s

g2s%
(Mpr−M∗pr)2+

γ

%

∫ PF

0

d3PN

(2π)3

√
P2
N +M∗2pr−∆E (15)
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with M∗pr = Mpr −
γg2s
2m2

s

∫ PF

0

d3PPPN

(2π)3
M∗pr√

PPP 2
N +M∗2pr

where ∆E(%) = pHVN =
%2εqN

′
(%)VN (%)

(1− %VN (%))

with R0/R(%) = 1 + ∆E(%)/Mpr(%)

γ denotes a level degeneracy and there are two (coupling) constants: a vector
g2v and a scalar g2s , which were fitted [1, 2] at two different saturation points
(%0 = 0.16, 0.19 fm−3 – see a figure caption) in NM.

The EoS (pressure versus density) present in scenario (A) is shown in Fig-
ure 3 of [16], the EoS of scenario (B) in displayed in Figure 2 of [15]. In both
cases the area indicated by the “flow constraint” taken from [30] determines in
the plots the allowed course of the EoS, using an analysis which extracts in-
formation from the matter flow in heavy ion collisions from the high pressure
obtained there. Walecka [1] and DBHF calculations [31] with a Bonn A in-
teraction are shown for references. Results for pressure in both scenarios are
similar, however critical densities are very different. This difference illustrates
Figure 1, where the nuclear energy density %εqN (%) grows with density while the
nucleon energy density Mpr(%)/VN (%) in scenario (B) declines and finally both
energy densities for % ∼ 0.5 fm−3 are equal. For that density, nucleon bags
with constant R0 ∼ 0.7 starts to overlap in case (B) and multi-quark bags would
be possibly formed. The alignment density depends strongly on the nucleon ra-
dius, in turn the points where B(%)=0 depend mainly from the starting value
B(%0). For example, for R0 = 0.75 fm the alignment density %al = 0.44 fm−3,
shown in Figure 1, almost coincides [16] a vanishing bag constant B(%0) = 100
MeV fm−3. Therefore, scenario (B) with constant nucleon radius and the grad-
ual alignment of the energy densities inside and outside the bag suggests the
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Figure 1. Energy density inside nucleons as a function of the nuclear density for R0 =
0.7 fm in two cases: (A) const. nucleon mass (red line) and (B) const. radius (blue line).
The density of nuclear energy (black line) is shown for reference.

effective mass M∗
pr and energy transfer ∆E present only in scenario (A):

εqN (ϱ) =
g2v
2m2

v

ϱ+
m2

s

g2sϱ
(Mpr−M∗

pr)
2+

γ

ϱ

∫ PF

0

d3PN
(2π)3

√
P2
N+M∗2

pr −∆E (15)

with M∗
pr = Mpr −

γg2s
2m2

s

∫ PF

0

d3PN
(2π)3

M∗
pr√

P2
N+M∗2

pr

where ∆E(ϱ) = pHVN =
ϱ2εqN

′
(ϱ) VN (ϱ)

(1− ϱVN (ϱ))

with R0/R(ϱ) = 1 +∆E(ϱ)/Mpr(ϱ)

γ denotes a level degeneracy and there are two (coupling) constants: a vector
g2v and a scalar g2s , which were fitted [1, 2] at two different saturation points
(ϱ0 = 0.16, 0.19 fm−3 – see a figure caption) in NM. The EoS ( pressure versus
density) present in scenario (A) is shown in Fig.3 of [16], the EoS of scenario
(B) in displayed in Fig.2 of [15]. In both cases the area indicated by the “flow
constraint” taken from [30] determines in the plots the allowed course of the
EoS, using an analysis which extracts information from the matter flow in heavy
ion collisions from the high pressure obtained there. Walecka [1] and DBHF
calculations [31] with a Bonn A interaction are shown for references. Results
for pressure in both scenarios are similar, however critical densities are very
different. This difference illustrates Fig. 4, where the nuclear energy density
ϱεqN (ϱ) grows with density while the nucleon energy density Mpr(ϱ)/VN (ϱ) in
scenario (B) declines and finally both energy densities for ϱ ∼ 0.5 fm−3 are

7

Figure 1. Energy density inside nucleons as a function of the nuclear density for R0 =
0.7 fm in two cases: (A) const. nucleon mass (red line) and (B) const. radius (blue line).
The density of nuclear energy (black line) is shown for reference.

152



Nucleon Properties & Nuclear Equation of State

crossover transition below % = 0.45 fm−3. However, such a transition around
% ' 0.4 fm−3 is not observed in heavy ion experiments. Also in neutron
stars [34], for that density of star core we would expected for the quark core to
decrease the radius of the star, but such a decrease is not expected in comparison
to lighter stars with a standard neutron core. The scenario (A) with constant nu-
cleon mass [16] is more realistic then scenario (B) [15] without energy transfer.
The energy transfer, equal to the volume energy ∆E = pHVN , provides the con-
stant nucleon mass, the good values of the compressibility K−1q ∼ (250− 350)
MeV and the symmetry energy Es = 31 MeV. The energy transfer at the satura-
tion region above the equilibrium density, reduces also the value of the slope of
the symmetry energy from L ' 108 MeV to L ' 61 MeV [35]. Also for con-
stant nucleon mass in scenario (A), a nucleon volume decreases with %, therefore
nucleon bags do not overlap for large density and the energy density of the nu-
cleon increases due to the energy transfer into nucleon bags.

4 Conclusions

We have shown, how nucleon volumes in compressed NM affect the nuclear
compressibility at equilibrium, reducing the nucleon mass or volume in the EoS.
It effectively corresponds to nonlinear, pressure dependent modifications of a
scalar potential. Not accidentally, in the widely used standard [12, 13] RMF
model with point-like nucleons the good compressibility is fit by nonlinear modi-
fications of a scalar mean field with the help of two additional parameters. Thus,
our results suggests to reconsider these mean field parameters. The presented
model of compressed nucleons in dense NM is suitable for studying heavy ion
collisions and neutron star properties (mass–radius constraint); especially the
most massive known neutron stars [33] recently discover and we plan to calcu-
late the symmetry energy and include the octet of baryon, including strangeness,
in a next work.
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[15] J. Rożynek, J. Phys. G 42 (2015) 045109.
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