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Abstract. The microscopic model of optical potential (OP) is applied for calcu-
lations of the12,14Be+12C elastic scattering cross sections at energies 679 MeV
and 796 MeV. The real part of the OP is constructed within the double folding
model with the exchange part including while the imaginary part is based on the
high-energy approximation theory. The OP depends on the nuclear density dis-
tributions of12,14Be and thus, their models are tested in our study. The differen-
tial cross sections are calculated with the help of the computer code DWUCK4,
in which the effect of the inelastic channel contribution istaken into account.
The breakup reaction14Be+12C→

12Be+2n+12C is also discussed.

1 Introduction

The intention of this contribution is to analyze the elasticscattering of the neutron-
rich isotopes12,14Be on12C target at energy of 56 MeV per nucleon within the
microscopic optical potential by using the density distribution models of the
exotic nuclei12,14Be being of the main physical interest. The respective exper-
imental data have been published in [1] and already interpreted on the basis of
phenomenological approach [1, 2]. However, a reasonable agreement with the
data was obtained by fitting more than 10 phenomenological parameters. More-
over, the values of parameters in [1,2] occured to be very different from one to
another. Thus, the problem is still open to explain the experimental data on the
basis of a realistic theoretical approach.

In our study, the hybrid microscopic OP is used [3,4], where the real part of
the OP is constructed within the double folding model (DF) [5] with accounting
for the antisymmetrization of the wave function. As to the imaginary part of the
OP, it is calculated on the basis of the high energy approximation [6]. Previously,
effectiveness of this approach was confirmed by analysis of experimental data on
elastic cross sections and breakup of light exotic nuclei of6,8He [7–10], 8B [11],
11Li [ 12,13], 10,11Be [14].

In Section2, the theoretical approach on the basis of the microscopic model
of OP is described. The results from the analysis of the experimental data of
12,14Be+12C scattering are presented in Section3. In Section4, the approximate
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theoretical estimation of the breakup cross sections of thereaction14Be+12C
→

12Be+2n+12C has been made.

2 Theoretical Framework

2.1 The double folding OP

The double folding OP consists of direct and exchange terms,V D andV EX

[3–5]:
V DF (r) = V D(r) + V EX(r). (1)

Both potentials are composed from the isoscalar and isovector terms and the
isoscalar one is determined by the following expressions for V D andV EX :

V D(r) =

∫

d3rpd
3rtρp(rp)ρt(rt)v

D
NN (s) (2)

V EX(r) =

∫

d3rpd
3rtρp(rp, rp + s)ρt(rt, rt − s)

× vEX
NN (s) exp

[

iK(r) · s

M

]

. (3)

Heres = r+ rt − rp is the vector between two nucleons, one of which belongs
to the projectile and another one to the target nucleus.ρp,t are the projectile
and target densities,K(r) is the local momentum of the nucleus-nucleus rela-
tive motion, andvD,EX

NN are the effective Paris nucleon-nucleon (NN) CDM3Y
potentials parameterized in [15].

The isovector potential is determined by the same formulas (2) and (3) but
ρi (i = t, p) should be exchanged byδρi, the difference between proton and
neutron densities for eachi-nucleus.

2.2 OP within the high-energy approximation

At comparably high energies, theNN potential is expressed through its explicit
form [6] and thus, the microscopical OP is presented as follows [3]:

UH
opt(r) = −

E

k
σ̄N (i+ ᾱN )

1

(2π)3

∫

e−iqrρp(q)ρt(q)fN (q)d3q. (4)

Here σ̄N is the isospin averagedNN total cross section,̄αN is the ratio of
real to imaginary part of the forward nucleon-nucleon amplitude, andfN (q) =
exp(−βNq2/2) whereβ is the slop parameter. These parameters depend on the
energy and parametrized as done in [16].

So, for the imaginary potential, we obtain:

WH(r) = −

1

2π2

E

k
σ̄N

∫

∞

0

j0(qr)ρp(q)ρt(q)fN (q)q2dq. (5)
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2.3 Calculation of the cross sections

The final hybrid form of the hybrid microscopic OP is following:

U(r) = NRV
DF (r) + iNIW

H(r), (6)

whereNR andNI are the renormalization factors of the real and imaginary OPs
which are adjusted to experimental data, and in the case of the known densities
of interacting nuclei, there are no more parameters to be fitted. The standard
DWUCK4 [17] code is used for calculation of the cross sections. The Coulomb
potential is taken in the standard form of the uniformly charged sphere with
radiusRC .

2.4 Density distributions

In our analysis, we use the following densities of12,14Be:

• Microscopic density calculated within the generator coordinate method
(GCM) [18]. In this framework, the14Be nucleus is considered as a three-
cluster nucleus, involving several12Be+n+n configurations. The12Be
core nucleus is described in the harmonic oscillator model with all possi-
ble configurations in thep shell.

• In the variational Monte Carlo model (VMC) [19], the proton and neu-
tron densities are computed with the AV18+UX Hamiltonian, in which
the Argonne v18 two-nucleon and Urbana X three-nucleon potentials are
used.

• Phenomenological density in the form of the symmetrized Fermi function
(SF):

ρSF (r) = ρ0
sinh(

R

a
)

cosh(
r

a
) + cosh(

R

a
)
, ρ0 =

A
4

3
πR3

[

1 + (π
a

R
)2)

]

−1

. (7)

The parameters, radiusR and diffusenessa in the SF-function (7), were
established in [20] by fitting (within the Glauber approach) to the experi-
mental data of the12,14Be+p elastic scattering at 700 MeV:R = 1.37 fm,
a = 0.67 fm in the case of the12Be nucleus andR = 0.99 fm, a = 0.84
fm for 14Be.

Figure1 shows the densities of12Be (left panel) and14B (central panel) that
we use further in the calculations of cross sections. The solid lines correspond
the GCM density, dashed lines show the SF densities, and the VMC density of
12Be is shown by the dotted line.

The 12C density is taken in the SF form (7) with radius 2.275 fm and dif-
fuseness 0.393 fm. Additionally, the modified SF density wasalso used in our
calculations:

ρ(r) = ρSF (r) + ρ
(1)
SF (r), (8)
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Figure 1. Density distributions of12Be (left
upper panel),14Be (right upper panel), and
12C (right down panel). In the left and
central panels, solid lines correspond to the
GCM density, dashed lines to the SF densi-
ties, dotted line to the VMC density. Solid
and dashed curves on the right panel corre-
spond, respectively, to the SF density and
modified SF density of12C. r [fm]
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where the surface termρ(1) is calculated via the 1st derivative ofρSF . Param-
eters of this density were obtained in [21] by fitting to eA scattering data. The
12C densities are shown on the right panel of Figure1, where the SF density is
plotted by solid line and the modified density (8) by dashed line.

3 Results

The differential cross sections of the12,14Be+12C elastic scattering are pre-
sented in Figure2. Here, the standard SF form (7) of the12C density was used
(R =2.275 fm anda =0.393 fm). The solid, dashed and dotted lines correspond,
respectively, to the GCM, SF, and VMC densities of12,14Be. The respective val-
ues of parametersNR andNI are given in the Table1. It is seen that all density
models of12,14Be can not provide a reliable agreement with experimental data,
especially in the small angles region: the first minimum of the calculated curves
is so deep and shifted to the right in comparison to the experimental data.

Figure3 presents the calculation with the modified SF density of12C in the
form (8) in comparison with calculation using the ”standard” SF density (7).
The values of the parametersNR andNI are given in Table1. It is seen that
the modification (8) provides the left-shift correction of the first minimum of the
theoretical curve. However, the agreement with experimental data stays not too
good. Here the calculation with the GCM form of the12,14Be density is shown.
The results for another densities are the same.
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Figure 2. The differential cross sections of the12,14Be+12C elastic scattering. The solid,
dashed and dotted lines correspond, respectively, to the GCM, SF, and VMC densities of
12,14Be.

Table 1. Values of parameters of microscopic OP

Nucleus Density Figure 2 Figure 3 Figure 4
NR NI NR NI NR NI β2+

12Be GCM 0.71 0.58 0.71 0.58 0.42 1.09 0.66
SF 0.61 0.66 0.57 0.91 0.78
VMC 0.64 0.71 0.42 1.10 0.59

14Be GCM 0.75 1.05 0.75 1.05 0.36 1.32 0.42
SF 0.57 0.57 0.43 0.62 0.48

At the next stage of our study we followed the notifications in[1] and [2],
where the authors suggested that the experimental data should be considered as
quasielastic scattering,i.e., a contribution of the inelastic channels connected
with excitations of the low-lying collective states of a nucleus, should be ac-
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Figure 3. The differential cross sections of the12,14Be+12C elastic scattering with the
GCM density of12,14Be. The solid and dashed curves correspond, respectively, to the
calculation with the ”standard” and modified SF density of12C.
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Figure 4. The differential cross sections of the12,14Be+12C quasielastic scattering with
accounting for the2+ channel. The solid, dashed, and dotted lines correspond, respec-
tively, to the GCM, SF, and VMC densities of12,14Be.

counted for, too. Within our microscopic approach the inelastic OP was calcu-
lated via the derivative of the microscopic OPs:Uinel = −R̃ ·dU/dr whereU is
microscopic OP in the form (6), R̃ is the potential radius (we put̃R = 4.25 fm,
as in [1]). As a first step, we only accounted for excitation of the2+ state
(E2+ = 4.436 MeV). In this case, there is one more fitting parameter, namely
the deformation parameterβ2+. The results are shown in Figure4. The cal-
culations have been performed with modified SF density of12C and different
densities of12,14Be. The values of the parametersNR, NI , andβ2+ are given
in Table1.

It is seen that the account for the inelastic channel significantly improves the
agreement with experimental data although a discrepancieswith experimental
data are noticeable yet in the case of14Be. One expects that accounting for exci-
tation of the3− inelastic channel can provide the agreement with experimental
data to be comparable with results in [1, 2] on the basis of phenomenological
approach.

4 Estimation of the Breakup Cross Section

The cross section of14Be+12C→
12Be+2n+12C for thes-state of relative motion

of the clusters12Be and2n is

dσ

dk
∼

1

k2

∣

∣

∣

∣

∫

dr uk,0(r)g0(r)

∫

d2b d cos θ dϕSc(bc)Sv(bv)

∣

∣

∣

∣

2

. (9)

Hereg0(r) anduk,0 are the bound (before) and non-bound (after breakup) clus-
ter wave functions of12Be+2n. When neglecting interactions of the clusters with
the target nucleus12C one gets the respectiveS-matrixSc(bc) = Sv(bv) = 1,
and thus

dσ

dk
∼

1

k2

∣

∣

∣

∣

∫

dr uk,0(r) g0(r)

∣

∣

∣

∣

2

(10)
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Substituting here the free motion wave functionuk,0 and the oscillator wave
functiong0 with binding energyEb =1.31 MeV in the nucleus14Be=12Be+2n

uk,0(r) = sin kr, g0(r) = C r exp(−κr2), κ =
µEb

3~2
(11)

one obtains

dσdiff

dk
∼

1

k2

∣

∣

∣

∣

∫

dr r e−κr2 sin kr

∣

∣

∣

∣

2

∼ exp

(

−

k2

2κ

)

. (12)

Substituting hereκ=0.018 fm−2 and measuringk in units MeV/c, one gets

dσ

dk
∼ exp

(

−0.00072 k2
)

. (13)

Using Eq. (13) one obtains the widths of the momentum distributionΓ from the
ratio 0.00072 · (Γ/2)2 = ln 2, which leads to the estimationΓ = 62 MeV/c
comparable with the experimental value that is about 87 MeV/c [1]. One sees
that we need an account for (a) the distortion effects whenScSv is not equal
1, then (b) one should use the exact numerical wave functionul(r), and also to
include contributions of the otherl, L waves non equal to zero.

5 Summary

• The differential cross sections of elastic scattering of12,14Be+12C at en-
ergy 56 MeV/nucleon have been analyzed within the hybrid model of mi-
croscopic optical potential.

• Three models of the12,14Be density distribution are tested.

• It was shown that the inelastic channel should be added to theelastic one
to explain the experimental data of the12,14Be+12C elastic scattering with
given resolution.

• The approximate estimation of the width of the14Be breakup momentum
distribution has been obtained to be comparable with the experimental
value.
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