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Abstract. This work is devoted to studying light nuclei7,9,11Li. The proba-
bility density for the ground states of7,11Li nuclei is calculated by Feynman’s
continual integrals method. The dynamical approach based on the numeric so-
lution of the time-dependent Schrödinger equation is applied to the description
of dynamics of outer neutrons in the reaction11Li + 28Si and to the calculation
of total reaction cross sections.

1 Introduction

The study of nuclear reactions involving neutron-rich weakly bound nuclei makes
it possible to obtain information on the structure of the investigated nuclei (clus-
ters, neutron halo,etc.) and its manifestation in reactions [1]. It also provides
an opportunity for testing various microscopic models. Oneof the criteria for
the limits of applicability and the degree of accuracy of theoretical models is the
quantitative agreement between the values of the calculated and the experimen-
tally measured total cross sections of nuclear reactions.

The results of experiments on measuring total cross sections for the9Li + 28Si
reaction as a function of energy showed that in the energy range10− 20 A MeV
the values of the total cross section are much larger than those for the7Li + 28Si
reaction [2, 3]. In [2], it was assumed that the reason for the observed behav-
ior was related to the properties of the shell of weakly boundexternal neutrons
and their adiabatic and diabatic rearrangement in the process of collision with
the target nucleus. In the11Li nucleus, the external neutrons are even more
weakly bound, which determines interest in studying reactions involving this
nucleus. In Refs. [4, 5], it was shown experimentally that the total cross sec-
tions for reactions involving weakly bound6He and11Li nuclei can be rep-
resented in the formσR

(
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≈ σR

(

4He
)

+ σ−2n
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andσR

(

11Li
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≈

σR

(

9Li
)

+ σ−2n

(
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)

, respectively. In this work, calculations of the total
cross sections for the11Li + 28Si reaction are based on the model of the11Li
nucleus as a system of a9Li core and two neutrons. The evolution of the wave
functions of external neutrons is calculated using a numerical solution of the
time-dependent Schrödinger equation. The initial conditions for the wave func-
tions are obtained based on the shell model calculations with the parameters
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providing neutron separation energies close to the experimental values as well
as results of calculations of probability densities using Feynman’s continual in-
tegrals method [6–8].

2 Structure of 7,9,11Li Nuclei

2.1 Feynman’s continual integral method for studying ground states of
few-body nuclei

For studying the structure of7,11Li nuclei in the few-body model, we used
Feynman’s continual integrals method [6,7]. It provides a mathematically more
simple possibility for calculating the energy and the probability density for the
ground states ofN -body systems compared to other approaches,e.g., hyper-
spherical harmonics method [7], because it does not require expansion of the
wave function into a system of functions. Feynman’s continual integral [6,7] is
a propagator – the probability amplitude for a particle to travel from the pointq0
to the pointq in a given timet

K (q, q0; t) =

∫

Dq(t′) exp

{

i

~
S [q(t′)]

}

=

〈

q

∣

∣
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∣

exp

(

−
i

~
Ĥt

)∣

∣

∣

∣

q0

〉

. (1)

HereS[q(t)] andĤ are respectively the action and the Hamiltonian of the sys-
tem, andDq(t) is the integration measure [8]. For a time-independent poten-
tial energy, transition to the imaginary timet = −iτ yields the propagator
KE(q, q; τ) with the asymptotic behavior

KE (q, q; τ ) → |Ψ0(q)|
2
exp

(

−
E0τ

~

)

, τ → ∞ (2)

or
~ lnKE (q, q; τ ) → ~ |Ψ0(q)|

2
− E0τ, τ → ∞. (3)

Expression (3) can be used to obtain the ground-state energyE0 as the slope
of the linear part of the graph representinglnKE(q, q; τ) as a function ofτ .
The squared modulus of the ground-state wave function|Ψ0(q)|

2 in the points
q of the finite region corresponding to finite motion can be determined based
on (2) at τ values in the linear part of the graph representing the dependence
lnKE(q, q; τ). The approach to calculation of the propagatorKE(q, q; τ) using
Monte Carlo method and NVIDIA CUDA technology was proposed in works [7,
8]. Parallel calculations were performed on the Heterogeneous Cluster of LIT,
JINR.

2.2 Structure of 7Li nucleus

In the our model, neutrons (n) and protons (p) in the nuclei interact with each
other by nucleon-nucleon potentials with repulsive cores

Vn−n(r) ≡ V
(N)
p−p (r) =

3
∑

k=1

u′

k exp(−r2/b′k
2
), (4)

187



V.V. Samarin, M.A. Naumenko

n n

p

a

z

y

x

a) b)

0 1 2 3 4 5
0

1

2

3

4

5

x, fm

z
,

fm

Figure 1. The probability density for the7Li nucleus in the modelα + p + n + n with
regular triangle configuration of nucleons and the vectorsx, y, z in the Jacobi coordi-
nates; nucleons andα-core are denoted as small and large spheres, respectively.The most
probable configuration isα + triton.

Vp−n(r) =

3
∑

k=1

uk exp(−r2/bk
2). (5)

The nuclear part of theα-nucleon potentials used for6He, 6Li, 9Be nuclei
(see [7, 8]) has a repulsive core for excluding the forbidden (internal) 1s state
in these nuclei,e.g.,

Vα−n(r) =

3
∑

i=1

Ui [1 + exp ((r −Ri)/ai)]
−1

. (6)

The values of parameters of potentials (4)–(6) are given in Ref. [8]. An example
of the probability density for the ground state of7Li in the 4-body model is
shown in Figure1. The most probable configuration isα + triton, and the neutron
separation energies from7Li nucleus and triton equal to close values: 7.25 MeV
and 6.3 MeV, respectively. These values for outer neutrons may be obtained in
the shell model of deformed nucleus7Li.

It is well known that the7Li, 9Li, 11Li nuclei are deformed; the experimen-
tal values of the quadrupole deformation parameterβ2 are from –0.9 to –1.5 for
7Li, from –0.6 to –0.8 for9Li, –0.6 for 11Li [ 9, 10]. Calculations in the shell
model of the deformed nucleus by the method of Ref. [11] with nonspherical
Woods–Saxon potential from Ref. [12] provided the energies of the upper oc-
cupied levels of the nucleus7Li approximately equal to the experimental values
of the neutron separation energy taken with the opposite sign. The obtained
neutron-level diagram is shown in Figure2a. Two neutrons and two protons at
deep lower levels corresponding to the level1s1/2 of the spherical nucleus with
the projection of the total angular momentum on the axis of symmetry of the
nucleus|mj | = 1/2 belong to a nuclear core similar to anα-cluster. In the few-
body model, the two external neutrons of the7Li nucleus on the sublevel with
the projection of the total angular momentum on the axis of symmetry of the
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Figure 2. Schemes of neutron levels for the nuclei7Li (a), 9Li (b), and 11Li (c) in the
shell model of the deformed nucleus and in the shell model of the spherical nucleus11Li
(d).

nucleus|mj | = 3/2 corresponding to the level1p3/2 of the spherical nucleus
can be considered quite strongly bound to the triton cluster.

2.3 Structure of 9Li nucleus

The obtained neutron-level diagram for the9Li nucleus is shown in Figure2b.
In the 9Li nucleus, the neutron separation energy for sublevel|mj | = 3/2 is
noticeably lower than in the7Li nucleus, and for the higher-lying sublevel with
|mj | = 1/2 the separation energy is 4.06 MeV. Thus, for the four external neu-
trons of the9Li nucleus, the bond with theα-cluster core is weakened. In col-
lisions with heavy nuclei, the probability density distribution for these neutrons
can change more significantly than for the two external neutrons of the7Li nu-
cleus [2].

2.4 Structure of 11Li nucleus

The separation energies of one and two outer neutrons from the 11Li nucleus
are very low, 0.40 MeV and 0.37 MeV, respectively, therefore, the11Li nucleus
is considered as a system of a9Li-core and two neutrons. An example of the
probability density for the ground state of11Li in this 3-body model is shown in
Figure3. The outer neutrons forming spread weakly-bound dineutronmay be
considered as independent particles in the shell model.

The level scheme for the neutrons of the deformed11Li nucleus is shown
in Figure2c. The energies of the sublevels with|mj | = 3/2 and|mj | = 1/2,
corresponding to the level1p3/2 of the spherical nucleus, turn out to be close.
This makes it possible, with sufficient accuracy, to use the spherical shell model
for the 11Li nucleus with three filled neutron shells:1s1/2 (theα-cluster core
shell),1p3/2 (the inner skin shell), and1p1/2 (the outer halo shell).
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Figure 3. The probability density for the11Li nucleus (configuration9Li + n + n) and the
vectors in the Jacobi coordinates; neutrons and9Li-core are denoted as small empty cir-
cles and large filled circles, respectively. The most probable configurations are9Li + di-
neutron (1) and the cigar configuration (2).

3 Calculation of Total Reaction Cross Sections

As in Refs. [4,5], we consider two main groups of reaction channels, those that
are the consequence of the interaction of the9Li-like core of the11Li nucleus
with the 28Si nucleus and the consequence of neutron loss from the outershell
1p21/2 of the11Li nucleus. The loss of one neutron (with some probability) leads

to a subsequent loss of the second neutron by the unbound10Li nucleus. The
independent probabilitiesPcore of the reaction due to the interaction with the
9Li-like core of the11Li nucleus andPloss of the neutron loss from the outer shell
can be determined as functions of energyE and the impact parameterb in the
semiclassical model:Pcore(b, E), Ploss(b, E). The total reaction cross section
σR can be expressed in terms of these probabilities. The probability of absence
of the reaction involving the core is equal to1 − Pcore(b, E), the probability of
absence of loss at least one neutron is[1− Ploss(b, E)]

2. The probability of the
reaction involving the core or due to the loss of a neutron from the outer shell of
the11Li nucleus is equal to

PR(b, E) = 1− [1− Pcore(b, E)] [1− Ploss(b, E)]
2
. (7)

In the semiclassical approach, the total cross section for the11Li + 28Si re-
action is represented by an integral over impact parameters
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σR = 2π

∞
∫

0

PR(b, E)bdb. (8)

The semiclassical expression for the total cross section ofthe reaction9Li + 28Si

σR = 2π

∞
∫

0

Pcore(b, E)bdb (9)

corresponds to the sum over the orbital angular momenta in the quantum ap-
proach

σR =
π

k2

∞
∑

l=0

(2l + 1) P̃core(l, E) (10)

taking into account the relationl ∼ kb, wherek is the modulus of the wave
vector. The calculation of the total cross sectionσR for the reaction9Li + 28Si
and the probabilityP̃core(l, E) in the optical model with the energy-dependent
optical potential was performed in Ref. [2] based on the solution of the time-
dependent Schrödinger equation for the external neutronsof the 9Li nucleus.
The comparison of the results of calculations with the experimental data is
shown in Figure4a. The dependence of the probabilitiesPcore(b, E) =
P̃core(kb, E) on b is shown in Figure4b. An increase in the cross section of
the reaction is most noticeable in the energy range at which the relative velocity
of the nuclei is close in magnitude to the average velocity ofexternal neutrons
in the investigated weakly bound nuclei [2].

For calculation of the probabilityPloss of neutron loss from the outer shell,
we use a time-dependent approach with a quantum descriptionof neutrons in
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Figure 4. a) The total cross section for the9Li + 28Si reaction: filled circles are the
experimental data [2,3,5]; the curve is the result of calculations in the optical model with
the energy-dependent optical potential [2]. b) ProbabilitiesPcore(b, E) = P̃core(kb,E)
depending on the impact parameterb for energies 2.5 A MeV (solid line), 5 A MeV
(dashed line), 12.3 A MeV (dash-dotted line), 50.6 A MeV (dotted line).
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Figure 5. An example of the evolution of the probability density for external neutrons of
the 11Li nucleus in the collision with the28Si nucleus at energyE = 12.6 A MeV. The
location of the panels a) – d) corresponds to time.

combination with motion of the centers of colliding nuclei along classical tra-
jectories [11,13,14]. The two-component spinor wave functionΨ(r, t) of each
of the two independent neutrons with the radius vectorr and the initial state
1p1/2 was calculated by numerical solution of the time-dependentSchrödinger
equation (TDSE) taking into account spin-orbit interaction [2,15,16]. The lat-
tice spacing in the TDSE method is 0.15 fm, which is substantially smaller than
0.8 fm in a typical time-dependent Hartree–Fock calculation [17]. The colliding
nuclei are enclosed in a box of typical dimensions 90×75×40 fm3. An exam-
ple of the evolution of the probability density of external neutrons of the11Li
nucleus in the collision with the28Si nucleus is shown in Figure5. It can be
seen that at energies≈10 A MeV the external neutrons lost by the11Li nucleus
are transferred to the target nucleus28Si or leave both nuclei with energy in the
continuous spectrum with comparable probabilitiesPd andPc, respectively.

The probabilitiesPd(b, E) of neutron transfer to unoccupied bound states
of the discrete spectrum in the28Si nucleus determined in the same way as in
Refs. [15,16] are shown in Figure6a as functions of the distance of the closest
approachRmin(b, E) between the centers of the nuclei. The probabilitiesPc of
transfer to the states of the continuous spectrum can be determined by integrating
the probability density outside the vicinity of the nuclei.As an estimate forPc,
we can use the expressionPc = CPmax, wherePmax is the maximum value
of the probability of neutron presence in the spherical layer D around the28Si
nucleus with boundary radiir1 = RSi + ∆R1 andr2 = RSi + ∆R2; RSi is
the radius of the target nucleus28Si; C is a variable (adjustable) parameter. It
is assumed that the released neutrons initially appear in the layerD in the form
of a compact three-dimensional wave packet (see Figure5) and then gradually
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Figure 6. The probabilities of neutron transfer to the unoccupied bound states of the
discrete spectrum in the28Si nucleus (a) and the probabilities of transfer to the states
of the continuous spectrum withC = 2, ∆R1 = 3 fm, and∆R2 = 10 fm (b) for
energies 2.5 A MeV (solid line) 6.3 A MeV (dash-dotted line),12.6 A MeV (dashed
line), 25.3 A MeV (dotted line), 50.6 A MeV (dash-dot-dottedline). Arrows indicate the
position of the Coulomb barrier.

leave it when the packet spreads. The dependence of the probabilities Pc on
Rmin(b, E) for C = 2, ∆R1 = 3 fm, and∆R2 = 10 fm is shown in Figure6b.

The probabilityPloss of neutron loss from the outer shell was determined by
the expression

Ploss(b, E) = min {Pd(b, E) + Pc(b, E), 1} . (11)

The results of calculations of total reaction cross sectionfor the value of the
adjustable parameterC = 2 for the transition probability to the states of the
continuous spectrum are shown in Figure7. Good agreement with the experi-
mental data is obtained.

In the energy dependence of the total cross section, a sharp maximum is
observed at energies near 5 A MeV. On the lower energy side, itis largely due
to a sharp increase in the reaction probabilityPcore of the interaction of the
target nucleus with the9Li-like core of the11Li nucleus and an increase in the
probability of transfer to the target nucleus of the neutronfrom the extended halo
shell1p21/2 of the11Li nucleus. A fairly sharp decrease in the total cross section
from the high-energy side atE ≈ 10 A MeV is due to the rapid decrease of
the probability of neutron transfer to the target nucleus and the decrease of the
reaction probabilityPcore of the interaction of the target nucleus with the9Li-
like core of the11Li nucleus in the region of sharp enhancement of the total cross
section for the9Li + 28Si reaction. The energy dependence of the probability
Pcore is due to different interaction time and the influence of the neutron layer
(skin) of the inner shell1p43/2, i.e., the redistribution of an appreciable part of
it into the region between the surfaces of the approached nuclei (see Ref. [2]).
The probabilityPc of transfer to the states of the continuous spectrum from
the extended halo shell1p21/2 changes (decreases) with increasing energy fairly

193



V.V. Samarin, M.A. Naumenko

0 10 20 30 40 50 60
1000

1500

2000

2500

3000

3500
C

ro
ss

 s
ec

ti
o
n

s
R
, 

m
b

Energy E, A MeV

11
Li +

28
Si

[5] [18] [19]

theory = 2C

Figure 7. The total cross section for the11Li + 28Si reaction: symbols are experimen-
tal data [5, 18, 19], curves are the results of calculations for the value of theadjustable
parameterC = 2 (solid curve) with the probabilityPc of transition to the states of the
continuous spectrum.

smoothly. This is the reason for the enhancement of the totalcross section for the
reaction11Li + 28Si in comparison with the9Li + 28Si and7Li + 28Si reactions.

4 Conclusions

The experimental data on the total cross sections for the7,9,11Li + 28Si reac-
tions have been compared with theoretical calculations. The total cross sections
for the 11Li + 28Si reaction have been calculated based on the numerical solu-
tion of the time-dependent Schrödinger equation for the external weakly bound
neutrons of the projectile nucleus11Li. The time-dependent model proposed in
the work shows that the sharp maximum in the total cross section is due to the
processes of neutron transfer from the external halo shell to the target nucleus
and the redistribution of the appreciable part of the inner skin shell into the re-
gion between the surfaces of the approached nuclei. Such an increase in the
cross section of the reaction is most noticeable in the energy range at which the
relative velocity of the nuclei is close in magnitude to the average velocity of ex-
ternal neutrons in the investigated weakly bound nuclei. The enhancement of the
cross section for the11Li + 28Si reaction compared to those for the9Li + 28Si
and7Li + 28Si reactions in the entire energy range (up to 50 A MeV) is due
to neutron transfer from the extended halo shell to the states of the continuous
spectrum. The calculated total reaction cross sections arein good agreement
with the experimental data.
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