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Abstract. In this contribution I summarize and discuss the results of the bulk
thermodynamic characteristics, meson and nucleon structure in hot matter ob-
tained in the framework of a chiral quark-meson theory. A hybrid NJL model
is used in which a Dirac sea of quarks is combined with a Fermi sea of quarks
or of nucleons. In the model mesons are described as collective q̄q excitations
and the nucleon appears as a baryon-number-one soliton of Nc valence quarks
coupled to both Dirac and Fermi sea. According to the model at some critical
density and/or temperature phase transitions from nucleons to quarks as well as
from Goldstone to Wigner phase are expected. At finite density the chiral order
parameter and the constituent quark mass have a non-monotonic temperature
dependence – at temperatures not close to the critical one they are less affected
than in cold matter. The quark matter is rather soft against thermal fluctuations
and the corresponding chiral phase transition is smooth. The nucleon matter is
much stiffer and the phase transition is very sharp. In the case of quark matter
a first-order transition is suggested at low temperatures (T < 80 MeV) which
changes to a second-order one at higher temperatures. In contrast to the quark
matter in the case of nucleon matter the thermodynamic variables show large
discontinuities which is a clear indication for a first-order phase transition. In
hot medium at intermediate temperature the nucleon soliton is more bound and
less swelled than in the case of cold matter. At some critical temperature, which
for nucleon matter coincides with the critical temperature for the phase transi-
tion, no more a localized solution is found. According to this model scenario
one should expect a first-order phase transition from nucleon to quark matter.
The results show that the hybrid model provides a consistent picture where the
Fermi sea of quarks is reasonable only for hot matter with temperature and/or
density around/above the critical values.

211



Christo V. Christov

1 Introduction

At some finite density and/or temperature one generally expects a restoration of
the chiral symmetry and a deconfinement, and hence a change of the structure
of the hadrons immersed in a hot and dense medium. The bulk properties of hot
nuclear and quark matter and especially the phase diagram of QCD is a topic
of increasing interest since it is related to the evolution of the early universe
after the Big Bang as well as to the processes in the interior of neutron stars.
Rather encouragingly, direct experimental studies of such phenomena are now
possible in the ultra-relativistic heavy-ion reactions accomplished at high-energy
accelerators like RHIC, NA61 at the SPS as well as FAIR and NICA (see e.g. [1]
and for a review [2]). It is illustrated in Figure 1 where the phase diagram of
QCD is schematically shown.

Obviously a detailed understanding of this phase diagram is one of the con-
temporary challenges of both particle and nuclear physics. In particular, the
order of the phase transition is still an open question. It seems to be gener-
ally accepted that below some critical point there is a first order-phase transition
which above the critical point undergoes a crossover transition to a second-order
one. Around the critical point one expect a mix of the two phases with different
order parameters (see e.g. for an overview [3] and also [6]).

From the side of theory these expected low critical values mean that we have
to deal with a non-perturbative phenomena. So far the analytical as well as
the numerical (lattice QCD) methods (see review [2] and references therein) are

Figure 1. Generally expected phase-diagram of QCD for nuclear matter. The solid
lines show the phase boundaries for different phases. The red solid circle corresponds
to the estimated critical point. The areas reached at different accelerator facilities are also
shown. [1]
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still not developed enough to allow the solution of low-energy non-perturbative
phenomena, especially if nucleons are involved. It is the reason for applying
in the last two decades different effective models like e.g. NJL [7] and linear
sigma model [5] to study these phenomena. These models are rather attractive
since although lacking confinement they incorporate, similar to QCD, the chiral
symmetry and also allows for its spontaneous breaking. It was the motivation to
apply a chiral quark-meson model (see for review [6] and references therein) for
these analyses. The model is able to reproduce quite reasonably the nucleon and
delta properties as well as the corresponding form-factors in vacuum. Within the
model the nucleon in vacuum is considered as a bound state of N, quarks coupled
to the polarized Dirac sea. The mean-field approximation is used, which means
that the meson quantum (loop) effects are not considered. Since the meson loop
effects are dominant at low temperatures and vanishing density (pions are the
lightest mode) the results are restricted mainly to the case of finite density and
relatively large temperatures where the nucleon and quark degrees of freedom
are most relevant. In order to consider the medium effects in the model a Fermi
sea is added.

2 Quark-Meson Chiral Model at Finite Temperature and Density

The SU(2)-version of the NJL Lagrangian [7] contains chirally invariant local
scalar and pseudoscalar four-quark interaction:

L = Ψ̄(i 6 ∂ −m0 )Ψ +
1

2
G [(Ψ̄Ψ)2 + (Ψ̄ iτγ5Ψ)2 ] , (1)

where Ψ is the quark field, G is the coupling constant, τ are the Pauli matrices
in the isospin space and m0 is the current quark mass taken equal for both up
and down quarks. Applying the well-known bosonization procedure [8] the NJL
model is expressed in terms of the auxiliary meson fields σ, π:

L = Ψ̄(i 6 ∂ − σ − iπ · τγ5)Ψ− 1

2G
(σ2 + π2) +

m0

G
σ , (2)

Using the functional integral technique the quantized theory at finite temper-
ature and density can be written in terms of the corresponding euclidean grand
canonical partition function [9]:

Z = Tr exp{−β(H − µN }

=
1

Z0

∫
DΨ DΨ†exp{

∫ β

0

dτ

∫
V

d3x(L −Ψ†µΨ)} , (3)

where V is the volume of the system, β is the inverse temperature and µ is the
chemical potential. The integration over the quarks can be done exactly, whereas
for the integration over the mesons we use a large Nc saddle-point (mean-field)
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approximation. This means that the meson fields are treated classically - no me-
son loops are taken into account. Following [9] the integration over the imagi-
nary time is replaced by a sum over fermionic Matsubara frequencies. Finally
the effective action is expressed as

Seff(µ, β) = − lnZ = −βV Nc
∑
α

{1

2
(εα − µ) +

1

β
ln[1 + e−(εα−µ)β ]

}
+ β

∫
V

d3x[
1

2G
(σ2 + π2)− m0

G
σ] . (4)

The energies εα are eigenvalues of the one-particle hamiltonian h

hΦn ≡ [
α·∆
i

+ γ0(σ + iπ · τγ5)]Φn = εnΦn (5)

and Φn are eigenfunctions. The saddle-point solution makes the effective action
stationary

∂Seff

∂σ
|σc=

∂Seff

∂π
|πc= 0 . (6)

The number of particles N in the volume V is kept fixed

N = − 1

β

∂Seff

∂µ
|σc,πc . (7)

Here σc and πc are the “classical” values of the meson fields and µ is the chem-
ical potential related to the number of particles N .

The thermodynamic characteristics of a many-body system are specified by
the thermodynamic potential

Ω(µ, β) ≡ Seff(µ, β)

βV
. (8)

It should be noticed that the saddle-point solution (σc , πc) minimizes not Ω
but the Helmholtz free energy

F = Ω− µ∂Ω

∂µ
(9)

with a constraint (7) and µ playing a role of a Lagrange multiplier.
In the mean-field approximation (leading order in 1

Nc
the inverse meson

propagator is given by the second variation of the effective action at the sta-
tionary point (σc , πc):

K−1
φ (x− y) =

∂2Seff

∂φ(x)∂φ(y)
|φc . (10)
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The on-shell meson masses correspond to the poles of the meson propagator
at q = 0. The physical quark meson coupling constants are given by the residue
of the propagator at the pole

g2
φ = lim

q2→−m2
φ

(q2 +m2
φ)Kφ(q2) . (11)

Due to the local four-fermion interaction the lagrangian (1) is not renormal-
izable and a regularization procedure with an appropriate cut-off Λ is needed to
make the effective action finite:

Tr ln Â→ −Tr

∫ ∞
Λ−2

ds

s
e−sÂ . (12)

Actually only the part of the effective action Seff(µ = 0, β = ∞) coming
from the Dirac sea (negative-energy part of the spectrum), is divergent and one
needs to regularize it. Here the proper-time regularization scheme is used. The
difference Seff(µ, β)−Seff(µ = 0, β =∞) is finite (Fermi sea contribution) and
does not need any regularization. Moreover, any regularization of the medium
part would suppress the medium effects ( [10]), since the positive part of the
spectrum would be affected by the cutoff as well.

Two different scenario are considered: Fermi sea of quarks as well as Fermi
sea of nucleons. In both cases the Dirac sea consists of quarks and it determines
the vacuum sector. In both pictures the mesons appear as q̂q excitations but
they are also directly coupled to the Fermi sea as well. In the case of Fermi sea
of quarks at finite temperature/density single quarks are allowed to be excited
leaving holes (antiquarks) in the Dirac sea. Apparently because of confinement
this picture is applicable only at temperature/density above the critical ones -
after the phase transition.

Since the Fermi sea contribution is finite it is straightforward to write the
Fermi sea part in terms of nucleon

SNmed(µ, β) =
∑
εNα<0

{(µN − εNα )− 1

β
ln[1 + e−β(εNα−µ

N )]} . (13)

The energies εNα are the solutions of the corresponding Dirac equation

hNΦNn ≡
[
α·∆
i

+ βgN (σ + iπ · τγ5)

]
ΦNn = εNn ΦNn . (14)

The meson fields are coupled to the nucleons with a coupling constant gN
which relates the nucleon mass to the non-zero expectation value of the scalar
meson field (constituent quarks mass M0) in vacuum.

MN = gNM0 . (15)

As in the quark spectrum, there is a gap of 2MN in the nucleon spectrum
which separates the negative part of the spectrum from the positive one. The
chemical potential µN is fixed by the baryon number (7).
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3 Fixing the Model Parameters

In vacuum (µ = 0, T = 0) the stationary conditions lead to a transitionally
invariant solution σc = M0 and πc = 0.

The parameters of the model, namely the current mass m0, the cutoff Λ and
the coupling constantG In the vacuum sector, are fixed reproducing the physical
pion mass mπ = 140 MeV and the pion decay constant fπ = 93 MeV. It leads
to the well-known Goldberger-Treiman (GT) relation on the quark level

M0 = gπfπ (16)

and one also recovers the Gell-Mann-Oakes-Renner (GMOR) relation:

m2
π = −m0〈Ψ̄Ψ〉+O(m2

0) . (17)

The only free parameter remained is the constituent quark mass M0 =
420 MeV is taken to reproduce properly the properties of a free nucleon (see [6]
and references therein). The corresponding value of the proper-time cutoff used
is Λ = 640 MeV. The value is taken large enough not to influence to results.

4 Phase Transition and Meson Properties at Finite Temperature
and Density

The results [11] for the constituent mass M as a function of temperature and
density and are presented in Figure 2 and Figure 3. At both vanishing tempera-
ture and density it is fixed to M0 = 420 MeV.

Figure 2. Constituent quark mass M as a function of temperature for different densities in
a quark (dashed lines) and a nucleon medium (solid lines). At both vanishing temperature
and density it is fixed to M0 = 420 MeV
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Figure 3. Constituent quark mass M as a function of density for different temperatures.

At finite density the constituent mass M is a non-monotonic function of
temperature. It means that in hot matter the mass is less affected by the medium
compared to the case of cold matter. At low T values the curves are close to those
of quark matter. However already at intermediate temperatures T > 120 MeV
they start to deviate significantly. At some critical values of temperature and/or
density the constituent mass M is reduced to the current mass m0 which is an
indication for a transition from Goldstone to the Wigner phase where the chiral
symmetry is not spontaneously broken. Whereas the quark matter is quite soft
against thermal fluctuations, the nucleon matter is much stiffer and the corre-
sponding chiral phase transition is rather sharp. In order to determine the order
of the phase transition we follow the Ehrenfest classification. Both the chiral
condensate 〈Ψ̄Ψ〉 and the constituent quark mass show a discontinuity at the
critical temperature of about 200 MeV. In fact, the system jumps between two
minima. The latter suggests that in the case of nucleon matter we have to deal
with a first order phase transition even in case of vanishing density and high tem-
perature in contrast to the case of quark matter. The results of M at T = 0 and
finite ρ suggest a critical density (ρc ≈ 2ρnm with ρnm = 0.16 fm3.) which in
fact, as we will see later, is also the critical density for the delocalization of the
soliton in cold nucleon matter.The same is valid for the temperature Tc which
makes this model picture consistent.

According to the present model picture, at some critical temperature and/or
density one expects a chiral phase transition together with a delocalization tran-
sition from nucleon matter to quark matter. It can be clearly seen from the
corresponding EOS (pressure versus baryon density) for different temperatures
plotted in Figure 4. In this Figure we combine the results from nucleon matter
(below the critical temperatures) in the hybrid model with those of quark matter
after the transition. Since we do not include vector mesons in the hybrid model,
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Figure 4. EOS (pressure versus density) for different temperatures. The pressure of the
vacuum is subtracted. The discontinuities correspond to a phase transition from nucleon
to quark matter.

we are not able to reproduce the nuclear matter saturation at zero temperature
and finite density which in the Walecka approach [12] is due to the interplay be-
tween the σ-meson attraction and the ω-meson repulsion. All curves in Figure 4
show rapid change discontinuity at the delocalization transitions from nucleon
to quark matter. Similar behavior can be seen in Figure 5 [11] for the energy
density as a function of T for different densities.

The phase diagrams for quark matter as well as for nucleon matter are shown
in Figure 6 [11]. As can be seen in quark matter at temperatures T > 90 MeV a

Figure 5. The same as Figure 4 but for the energy density. The discontinuities correspond
to a phase transition from nucleon to quark matter.
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Figure 6. ρ − T critical chiral phase diagram for quark matter [11]. The upper lines
separates the Goldstone phase with the chiral symmetry breaking from the Wigner phase
where the chiral symmetry is restored. The solid line shows the critical values for which
there is a first-order transition whereas the dashed line corresponds to the second-order
one. The arrow shows the temperature at which the order is changed. The dash-dot line
represents the ρ − T critical phase diagram for transition from nucleon matter to quark
one.

second-order phase transition is predicted. At lower temperatures in quark mat-
ter a first-order transition is expected. For the nuclen matter the model predicts
always a first-order transition. It should be noted also that below the critical
temperature Tc the critical density ρc for the phase transition in nucleon matter
is always smaller than one in quark matter. It means that at least according to the
present model picture at temperatures below the critical Tc two phase transitions
are expected - a phase transition from nucleon to quark matter, where the chiral
symmetry is still partially broken, followed by a phase transition from Goldstone
to Wigner phase at a higher density in quark matter.

Concerning the order of the phase transition the model picture suggests at
low temperatures (< 90 MeV) a first-order transition from both the nucleon and
from quark matter. At higher temperatures the picture is more complicated. For
the phase transition from nucleon matter to quark one expects first-order whereas
from quark matter the second-order phase transition is predicted. It means that
at higher temperatures one could expect a mix of different phases with different
order parameters.

Apart from the medium part written in terms of nucleons the inverse me-
son propagators in the nucleon medium have the same structure as in the quark
medium. The meson masses in the medium defined as the lowest zero solution
of the inverse meson propagators at q = 0 are presented in Figure 7.
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Figure 7. Meson masses in a quark medium as a function of temperature for different
densities. The shadowed area shows the width of the meson resonances.

In chiral limit the pions remain Goldstone bosons and their mass remains
almost unchanged also in the medium, whereas the sigma mass mσ follows the
constituent quark mass. Both GMOR and GT relations are also valid in the
medium. Since in the Wigner phase the constituent quark mass M vanishes up
to the current mass m0, the mesons become degenerated in mass and appear as
parity-doubled mesons.In the Wigner phase, after the deconfinement transition
(suggested also by the lattice results) the meson states appear as resonances in
the continuum and the poles of the meson propagators are complex. In the nu-
cleon medium similar to the constituent mass M the mass of the sigma meson
has a discontinuity at the critical temperature.

5 Nucleon as a Non-Topological B = 1B = 1B = 1 Soliton in the Medium

The nucleon in a hot medium appears as B = 1 localized bound solution (soli-
ton) of Nc valence quarks interacting with Fermi and Dirac sea both getting
polarized due to the interaction. The thermodynamic potential (effective action)
includes an explicit valence quark contribution as well as Dirac and Fermi sea
contributions:

Seff(µ, β) = NcΘ(εval)εval

+Nc
∑
εn<0

{
RΛ

3/2(εn)−RΛ
3/2(ε0n) + (µ− εn) +

Nc
β

ln[1 + e−β(εn−µ)]
}

+
1

V

∫
V

d3x[
1

2G
(M2 −M2

0 )− m0

G
σ −M0] , (18)
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where RΛ
3/2(ε) is the proper-time regularization function of the form (12). The

meson fields are assumed to be in a hedgehog form

σ(~r) = σ(r) and π(~r) = r̂π(r) , (19)

restricted on the chiral circle.

σ2 + π2 = M2 . (20)

We use a numerical self-consistent iterative procedure (see [6] and references
therein) solving in an iterative way the Dirac equation together with the equa-
tions of motion of the meson fields with the constraintNB = const. The latter is a
condition fixing the chemical potential µ. In the case of fixed T and ρ the proper
way to describe the equilibrium state of a thermodynamic system is to use the
free energy (9). Hence, the energy of the B = 1 soliton (effective soliton mass)
is given by the change of the free energy when the Nc valence quarks are added
to the medium. Subtracting the free energy F (µ0, ) of the unperturbed Fermi
and Dirac sea (translationally invariant medium solution), the soliton energy is
given by the sum of the energy of the valence quarks and the contributions due
to the polarization of both continua:

Esol = Ncηvalεval

+Nc
∑
εn<0

{
RΛ

3/2(εn) + (µ− εn) +
Nc
β

ln[1 + e−β(εn−µ)]
}

+
1

V

∫
V

d3x
m0

G
σ + µNcρB − F (µ0, β) , (21)

where ρB is the baryon density. Accordingly the soliton baryon density distri-
bution is split in valence, sea and medium parts.

ρsol = Ncθ(εval)Φ
†
val(~r)Φval(~r) +

1

2

∑
εn

Φ†val(~r)Φval(~r)sgn(−εn)

+
∑
εn>M

Φ†val(~r)Φval(~r)

1 + e−β(εn−µ)
−
∑
εn<0

Φ†val(~r)Φval(~r)

1 + e−β(εn−µ)
− ρB , (22)

We do not find a localized solution (soliton) at temperatures larger than a
critical value Tc ≈ 200 MeV. It means that at sufficiently large values the tem-
perature effects simply disorder the system and destroy the soliton. Within the
present model picture this may be interpreted as an indication for a delocaliza-
tion of the nucleon in a hot medium. However, one should keep in mind that the
model lacks confinement.

All detailed results can be found in [11]. In Figure 8 the temperature de-
pendence of the calculated B = 1 soliton energy are presented for the different
quark matter density. In case of finite T and zero ρ the soliton energy shows
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Figure 8. B = 1 soliton energy as a function of the temperature at three different quark
medium densities.

almost no reduction for temperatures not close to the critical one, whereas in the
opposite case of finite ρ and zero T the soliton energy is linearly decreasing with
the density. In a hot medium (both T and ρ finite) the temperature clearly sup-
presses the finite density effects and stabilizes the soliton. Further, at densities
larger than two times ρnm the soliton exists only at intermediate temperatures
100 MeV < T < 200 MeV. It means that according to the present model calcu-
lations, the soliton is more stable in hot matter than in cold matter. In fact, this
can be easily understood. Because of a gap in the quark spectrum, 2M , the Dirac
sea is much less affected by the temperature than the Fermi sea (positive-energy
part of the spectrum). At temperatures close to the critical one, the thermal fluc-
tuations become comparable with the chiral order parameter (chiral condensate
〈Ψ̄Ψ〉 > 0). They completely disorder the system and destroy the soliton.

In Figure 9 the temperature dependence of the calculated B = 1 soliton en-
ergy for the nuclear matter density is compared with those of quark matter. The
two curves have similar trends at intermediate values of T and start to deviate
at T close to the critical temperature Tc. The soliton in nucleon matter is more
bound and less affected by the temperature.

In order to illustrate the change of the soliton structure in a hot medium we
also plot the soliton square radius as a function of density for different tempera-
tures in Figure 10. All curves show a clear trend to grow rapidly at temperatures
close to the critical values which is an indication for a delocalization of the soli-
ton. At both finite density and temperature, however, the radius is smaller than
in the case of cold matter which is a sign for stabilization of the soliton in a hot
medium compared to the case of a cold medium.
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Figure 9. B = 1 soliton energy in nucleon matter at ρ = ρnm compared to those in quark
matter.

Figure 10. B = 1 soliton m.s. radius as a function of density for vanishing [13] as well
as for finite temperature values.

The calculated m.s. soliton radius for both quark and nucleon matter is pre-
sented in Figure 11. Close to the critical temperature it starts to grow but it is
much less pronounced than in the case of quark matter.

It should be noted also that the coupling constant gN defined as

gN = Esol/M (23)

stays almost constant (see [11]) which means that the relation (23) is a good
approximation also in a hot medium.
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Figure 11. B = 1 soliton m.s. radius in nucleon matter at p = pnm compared to that in
quark matter

6 Conclusion

The bulk thermodynamic characteristics, meson properties and the properties of
the nucleon as a B = 1 soliton of Nc valence quarks with Dirac and Fermi
seas are studied in a hot medium in the framework of an effective quark-meson
theory. The Fermi sea of nucleons as well as of quarks is considered. At some
critical values of temperature and/or density chiral phase transitions from the
Goldstone to the Wigner phase are suggested. The quark matter is quite soft
against thermal fluctuations whereas the nucleon matter is much stiffer and the
corresponding phase transition is rather sharp. In the quark matter at low tem-
peratures (below 90 MeV) a first-order phase transition is expected. At higher
temperatures it changes to a second-order phase transition. In contrast to the
quark matter in the case of nucleon matter the model suggests a first-order phase
transition even in case of vanishing density and high temperature. According
to this model picture at higher temperatures a mix of different phases with dif-
ferent order parameters is expected. The bulk thermodynamic characteristics in
nucleon and quark matter are different and at least according to the present re-
sults one has to consider also the baryon degrees of freedom in order to get a
complete picture.

The nucleon as a B = 1 soliton in medium is getting swelled and its mass
is reduced as well. In the baryon medium the soliton is less affected by the
medium. At finite density the temperature stabilizes the soliton. At some critical
values of temperature and/or density the nucleon as a soliton disappears. In
the model this delocalization means a transition from nucleon to quark matter.
The critical values for the delocalization of the soliton are same as for the phase
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transition from nucleons to quarks in the nucleon matter which makes this model
picture rather consistent.
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