Description of the Spectroscopic Properties of ²⁶Si

<u>H. Mebrek 1, H. Laidoudi 2, M. Bouhelal 2, D. Bahloul 1 </u>

¹PRIMALAB Laboratory; Departement of Physics, University of Batna 1, Avenue Boukhloufa M El Hadi, 05000 Batna, Algeria

²Laboratoire de Physique Appliquée et Théorique, Larbi Tebessi University, Tébessa 12022, Algeria

We are interested in our work to the study of the spectroscopic properties, complete energy spectrum and electromagnetic transitions, of the 26 Si in the framework of the shell model using the PSDPF interaction.

Silicon has a significant astrophysical interest, which plays a crucial role in the comprehension of nucleosynthesis, especially, the galactic chemical evolution. The ²⁶Si isotope is important for determining the ²⁵Al(p, γ)²⁶Si reaction rate. The calculation of the reaction rate involves the determination of the spin/parity level assignments, especially those at high energies, above the proton threshold. As ²⁶Si has N < Z, we make assignments based on known levels in the mirror nucleus ²⁶Mg.

We will present a detailed comparison between the shell model predictions obtained by PSDPF for the mirrors, ²⁶Si and ²⁶Mg, and the experimental available data. Calculated reaction rate of the ²⁵Al(p,γ)²⁶Si reaction will be as well discussed.