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Abstract. The low energy M1 excitations are studied within the Time Depen-
dent Hartree-Fock-Bogoliubov (TDHFB) approach. The solution of TDHFB
equations by the Wigner Function Moments method predicts three types of scis-
sors modes. Together with the conventional scissors mode generated by the
counter-rotation of protons against neutrons, two new modes arise due to spin
degrees of freedom (“spin” scissors). Two states fall into the energy range of
2.7 < E < 3.7 MeV, adopted for the scissors mode. The lowest one generates
a remarkable M1 strength below the conventional energy range. The results of
calculations for mean excitation energies and summed excitation strengths of
the scissors resonance in rare earth nuclei are presented. The main focus is on
the low-lying magnetic dipole strength distribution in 160,162,164Dy isotopes. A
comparison with the results of systematic calculations within the Quasiparticle-
Phonon Nuclear Model (QPNM) and with the data for integrated scissors res-
onance strength reported from nuclear resonance fluorescence and data of pho-
toneutron measurement from the Oslo-type experiments is discussed.

1 Introduction

The magnetic dipole (M1) response of atomic nuclei, as one of their fundamen-
tal features, is the subject of in-depth experimental and theoretical study since it
provides valuable information on the structure of the nucleus and the nature of
nuclear forces. The nuclear scissors mode was predicted as a counter-rotation of
protons against neutrons in deformed nuclei [1–3] and detected as a low-lying
magnetic dipole excitation, typically distributed over several 1+ states in the
energy range between 2 and 4 MeV. Extensive systematic of the scissors mode
has been accumulated in the nuclear resonance fluorescence (NRF) experiments
(for a review, see [4] and references there). It was found that the integrated M1
strength depends quadratically on the deformation parameter δ with a tipical
value

∑
B(M1) ' 3 µ2

N in the most rare-earth nuclei. In recent years, a wealth
of information about the M1 strength distribution has been provided from an
analysis based on the γ-ray strength function in the quasicontinuum region of
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excited nuclei extracted from (γ, n) [5] and (n, γ) [6] reactions. In these ex-
periments, systematic low-energy enhancement of dipole magnetic strength was
observed.

In the paper [7] the WFM method was applied for the first time to solve the
Time Dependent Hartree-Fock equations including spin dynamics. The scissors
mode is a rotational mode of isovector character. For this reason, the equations
have been solved in terms of the isoscalar and isovector variables, with neglect of
the coupling terms. The most remarkable result was the prediction of a new type
of nuclear collective motion: rotational oscillations of ”spin-up” nucleons with
respect of “spin-down” nucleons (the “spin” scissors mode). This new type of
nuclear scissors complements the familiar (orbital) scissors mode. Subsequent
accounting of pair correlations allowed to improve considerably the quantitative
agreement between the results of WFM theory and experiment [8, 9].

Solving the equations for the proton and neutron systems together, with-
out isovector-isoscalar decoupling, leads to appearance of another spin scissors
branch. The existence of three states of scissors can be intuitively understood
from combinatorial considerations – there are only three ways to divide the four
different kinds of objects (spin up and spin down protons and neutrons in our
case) into two pairs.

2 Model and WFM Method

The basis of the WFM method is the Time-Dependent Hartree–Fock–Bogoliubov
(TDHFB) equation in matrix formulation [10]:

i~Ṙ = [H,R] (1)

with

R =

(
ρ̂ − κ̂
−κ̂† 1− ρ̂∗

)
, H =

(
ĥ ∆̂

∆̂† − ĥ∗
)

(2)

The normal density matrix ρ̂ and Hamiltonian ĥ are hermitian whereas the ab-
normal density κ̂ and the pairing gap ∆̂ are skew symmetric: κ̂† = −κ̂∗,
∆̂† = −∆̂∗. While we do not specify the isospin indices in order to make
formulae more transparent. Let us consider matrix form of (1) in coordinate
space keeping spin indices {s, s′} = {↑, ↓} (here ↑ denotes s = 1/2, ↓ de-
notes s = −1/2) with compact notation Xss′

rr′ ≡ 〈r, s|X̂|r′, s′〉. Then the set of
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TDHFB equations with specified spin indices reads [9]:

i~ρ̇↑↑rr′′ =

∫
d3r′(h↑↑rr′ρ

↑↑
r′r′′ − ρ↑↑rr′h↑↑r′r′′ + h↑↓rr′ρ

↓↑
r′r′′ − ρ↑↓rr′h↓↑r′r′′

−∆↑↓rr′κ
†↓↑
r′r′′ + κ↑↓rr′∆

†↓↑
r′r′′),

i~ρ̇↑↓rr′′ =

∫
d3r′(h↑↑rr′ρ

↑↓
r′r′′ − ρ↑↑rr′h↑↓r′r′′ + h↑↓rr′ρ

↓↓
r′r′′ − ρ↑↓rr′h↓↓r′r′′),

i~ρ̇↓↑rr′′ =

∫
d3r′(h↓↑rr′ρ

↑↑
r′r′′ − ρ↓↑rr′h↑↑r′r′′ + h↓↓rr′ρ

↓↑
r′r′′ − ρ↓↓rr′h↓↑r′r′′),

i~ρ̇↓↓rr′′ =

∫
d3r′(h↓↑rr′ρ

↑↓
r′r′′ − ρ↓↑rr′h↑↓r′r′′ + h↓↓rr′ρ

↓↓
r′r′′ − ρ↓↓rr′h↓↓r′r′′

−∆↓↑rr′κ
†↑↓
r′r′′ + κ↓↑rr′∆

†↑↓
r′r′′),

i~κ̇↑↓rr′′ =

∫
d3r′(h↑↑rr′κ

↑↓
r′r′′ + κ↑↓rr′h

∗↓↓
r′r′′ + ∆↑↓rr′ρ

∗↓↓
r′r′′ + ρ↑↑rr′∆

↑↓
r′r′′)

−∆↑↓rr′′ ,

i~κ̇↓↑rr′′ =

∫
d3r′(h↓↓rr′κ

↓↑
r′r′′ + κ↓↑rr′h

∗↑↑
r′r′′ + ∆↓↑rr′ρ

∗↑↑
r′r′′ + ρ↓↓rr′∆

↓↑
r′r′′)

−∆↓↑rr′′ .

(3)

This set of equations must be complemented by the complex conjugated equa-
tions. We work with the Wigner transform [10] of equations (3). The rele-
vant mathematical details can be found in [8, 9]. The functions fss

′
(r,p, t),

κss
′
(r,p, t), ∆ss′(r,p, t) and hss

′
(r,p, t) are the Wigner transforms of ρss

′

rr′ ,
κss

′

rr′ , ∆ss′

rr′ and hss
′

rr′ , respectively. As a result, we obtain a set of 12 equations,
which is solved by the method of moments in a small amplitude approximation.
To this end all functions fss

′
(r,p, t) and κss

′
(r,p, t) are divided into equilib-

rium part and deviation (variation): fss
′
(r,p, t) = fss

′

eq (r,p) + δfss
′
(r,p, t),

κss
′
(r,p, t) = κss

′

eq (r,p) + δκss
′
(r,p, t). Then equations are linearized ne-

glecting quadratic in δf and δκ terms [8]. Following the papers [7] in the next
step we write obtained equations in terms of spin-scalar f+ = f↑↑ + f↓↓ and
spin-vector f− = f↑↑ − f↓↓ functions.

The microscopic Hamiltonian of the model, harmonic oscillator with spin
orbit potential plus separable quadrupole-quadrupole and spin-spin residual in-
teractions, is given by

H =

A∑
i=1

[
p̂2
i

2m
+

1

2
mω2r2

i − ηl̂iŜi
]

+Hqq +Hss, (4)
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with

Hqq =

2∑
µ=−2

(−1)µ

κ̄
Z∑
i

N∑
j

+
κ

2

 Z∑
i,j

(i 6=j)

+

N∑
i,j

(i 6=j)


q2−µ(ri)q2µ(rj),

Hss =

1∑
µ=−1

(−1)µ

χ̄
Z∑
i

N∑
j

+
χ

2

 Z∑
i,j

(i 6=j)

+

N∑
i,j

(i 6=j)


Ŝ−µ(i)Ŝµ(j)δ(ri − rj),

where q2µ(r) is a quadrupole operator, Ŝµ are spin matrices [11], κ, κ̄ and χ, χ̄
are strength constants,N andZ – numbers of neutrons and protons, respectively.

Integrating the set of equations for the δf ςτ (r,p, t) and δκςτ (r,p, t) over
phase space with the weights {r ⊗ p}λµ, {r ⊗ r}λµ, {p⊗ p}λµ and 1 one gets
dynamic equations for the following second-order moments that are collective
variables:

Lτςλµ(t) = (2π~)−3

∫
dr

∫
dp {r ⊗ p}λµδf ςτ (r,p, t),

Rτςλµ(t) = (2π~)−3

∫
dr

∫
dp {r ⊗ r}λµδf ςτ (r,p, t),

Pτςλµ(t) = (2π~)−3

∫
dr

∫
dp {p⊗ p}λµδf ςτ (r,p, t),

Fτς(t) = (2π~)−3

∫
dr

∫
dp δf ςτ (r,p, t),

L̃τλµ(t) = (2π~)−3

∫
dr

∫
dp {r ⊗ p}λµδκ↑↓τ (r,p, t),

R̃τλµ(t) = (2π~)−3

∫
dr

∫
dp {r ⊗ r}λµδκ↑↓τ (r,p, t),

P̃τλµ(t) = (2π~)−3

∫
dr

∫
dp {p⊗ p}λµδκ↑↓τ (r,p, t),

(5)

where ς = +, −, ↑↓, ↓↑ is the spin index, τ is the isospin index, {r ⊗ p}λµ =∑
σ,ν
Cλµ1σ,1νrσpν [11]. It is convenient to rewrite the coupled dynamical nonlin-

ear equations for protons (τ = p) and neutrons (τ = n) in terms of isoscalar
X ςλµ = X nς

λµ + X pς
λµ and isovector X̄ ςλµ = X nς

λµ −X
pς
λµ variables, where

X = {R,L,P}.
The physical meaning of most collective variables is obvious: R+

2µ is a varia-
tion of quadrupole moment of the nucleus andR+

00 is a variation of mean square
radius, P+

2µ and P+
00 are a variations of quadrupole moment and mean square

radius in a momentum space. The variables Lςλµ describe the coupling of mo-
mentum and coordinate space, L+

1µ is a variation of orbital angular momentum.
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To describe the scissors mode with quantum number Kπ = 1+, only a part
of the dynamic equations with µ = 1 is required. Imposing the time evolution
via eiΩt for all variables allows to transform the system of dynamical equations
into a set of algebraic equations. Eigenfrequencies Ω are found as solutions of
its secular equation. As a result, we obtain a system of 44 coupled isovector
and isoscalar equations of the first order in time, which can be reduced to 22
equations of the second order in time. Excluding the integrals of motion we
obtain 14 eigenvalue solutions.

3 Results of Calculations and Discussion

The results of calculations are presented in the Table 1, where the energies,
magnetic dipol and electric quadrupole strength are shown for 164Dy. The cor-
responding values obtained from solving the coupled isovector and isoscalar
equations are shown in the columns marked I. As can be seen from the Table,

Table 1. The results of WFM calculations for 164Dy: energies Ei, magnetic dipol
B(M1)i and electric quadrupoleB(E2)i strength. I – solutions of the system of coupled
equations, II – solutions of decoupled isovector and isoscalar equations: IS – isoscalar,
IV – isovector.

i Ei, MeV B(M1)i, µ2
N B(E2)i, W.u.

I II I II I II

1 1.47 1.29 (IS) 0.17 0.01 (IS) 25.44 53.25 (IS)

2 2.20 2.44 (IV) 1.76 2.03 (IV) 3.30 0.34 (IV)

3 2.87 2.62 (IS) 2.24 0.09 (IS) 0.34 2.91 (IS)

4 3.59 3.35 (IV) 1.56 1.36 (IV) 4.37 1.62 (IV)

5 10.92 10.94 (IS) 0.04 0.00 (IS) 50.37 55.12 (IS)

6 13.10 14.04 (IV) 0.00 0.00 (IV) 2.85 2.78 (IV)

7 15.42 14.60 (IS) 0.07 0.06 (IS) 0.57 0.48 (IS)

8 15.55 15.88 (IV) 0.00 0.00 (IV) 1.12 0.55 (IV)

9 16.78 16.46 (IS) 0.06 0.07 (IS) 0.53 0.36 (IS)

10 17.69 17.69 (IV) 0.01 0.00 (IV) 0.68 0.45 (IV)

11 17.91 17.90 (IS) 0.00 0.00 (IS) 0.53 0.51 (IS)

12 18.22 18.22 (IV) 0.13 0.18 (IV) 0.89 1.85 (IV)

13 19.32 19.32 (IS) 0.08 0.10 (IS) 0.61 0.97 (IS)

14 21.26 21.29 (IV) 2.03 2.47 (IV) 21.60 31.38 (IV)

the three low-lying states (with i = 2, 3, 4) manifest magnetic nature. Among
the high-lying states, µ = 1 branches of isoscalar (i = 5) and isovector (i = 14)
Giant Quadrupole Resonances are distinguished by a large B(E2) values. The
lowest electric level has a complicated origin and this is a topic for future re-
search. Here the focus is on the states of scissors nature.
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For further analysis, we neglect the terms coupling the isovector and isoscalar
systems. In this case, the equations splits into two independent subsystems. The
solutions of decoupled isovector (IV) and isoscalar (IS) equations are presented
in the columns II of the Table 1. The effect of the coupling terms was evalu-
ated in [12]. Comparing I and II columns, we see that the high-lying levels are
less sensitive to decoupling. The most remarkable change happens with third
low-lying state – it is visibly loses the magnetic force.

The decoupled equations give additional useful information. In this case it is
possible to track the variables that are predominantly responsible for the genera-
tion of the individual eigenvalues. These variables are shown in the first column
of the Table 2 for the three low-lying states under discussion. All these states

Table 2. Calculated energies Ei and magnetic dipol B(M1)i strength for 164Dy.

Decoupled equations Coupled equations

Ei, MeV B(M1)i, µ2
N Ei, MeV B(M1)i, µ2

N

L̄−
11 2.44 2.03 2.20 1.76
L−

11 2.62 0.09 2.87 2.24
L̄+

11 3.35 1.36 3.59 1.56

are generated by oscillations of the orbital angular momenta. The variable L̄+
11

generates isovector (spin-scalar) scissors – this is conventional orbital scissors
mode. L−11, L̄−11 generate spin-vector scissors (isoscalar and isovector, respec-
tively). These two states are the spin scissors mode. It must be emphasized that
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Figure 1. Schematic representation of three scissors modes: (a) spin-scalar isovector
(conventional, orbital scissors), (b) spin-vector isoscalar (spin scissors), (c) spin-vector
isovector (spin scissors). Arrows show the direction of spin projections; p – protons, n
– neutrons. The small angle spread between the various distributions is only for presen-
tation purposes. In reality the distributions are perfectly overlapping. The isovector and
isoscalar marks should be understood approximately, because both these types of motion
are coupled.
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all three scissors modes have an underlying orbital nature, because all are gen-
erated by the same type of collective variables – the orbital angular momenta.
Figure 1 shows a schematic representation of these modes: (a) spin-up and spin-
down protons oscillate versus the corresponding neutrons – spin-scalar isovector
(conventional scissors), (b) protons and neutrons, both spin-up oscillate versus
same with spin-down – spin-vector isoscalar (spin scissors), (c) protons spin-up
with neutrons spin-down oscillate versus protons spin-down with neutrons spin-
up – spin-vector isovector (spin scissors). Both spin scissors exist only due to
spin degrees of freedom. If we remove the arrows from the picture, nothing will
change for the conventional scissors (a). However figures (b) and (c) in this case
become identical and senseless, because the division of neutrons and protons in
two parts becomes pointless. Calculations without an artificial decoupling pro-
duce three scissors states of mixed nature (right panel of the Table 2). Coupling
particularly strongly overlaps two spin-vector levels at the energies of 2.20 MeV
and 2.87 MeV. Analysis of the flow distributions [7] confirms the rotational na-
ture of all three states.

Comparing the theoretical results with the available experimental data, we
encounter summing interval conventions, adopted for the scissors mode. It is
assumed that scissors mode includes only the states in a certain energy range:
2.7 < E < 3.7 MeV for Z < 68 and 2.4 < E < 3.7 MeV for Z ≥ 68 [13]
or 2.5 < E < 4.0 MeV for 82 ≤ N ≤ 126 [14]. The scissors resonance in
164Dy is especially interesting. There are two groups of strong M1 excitations
around 2.6 and 3.1 MeV, respectively, were detected by the NRF experiment [15]
here. Only the upper group falls within the conditional interval and refers to the
scissors mode. This situation has already been analyzed in detail in [12]. The
results of WFM calculations allow one to clarify the origin of both groups. Ta-
ble 3 demonstrates that the energy centroid Ē and summed

∑
B(M1)-value of

the lower group of the experimental 1+ states agree very well with the calcu-
lated E and B(M1) of the first spin-vector level. The respective values of the
higher group are in agreement with the energy centroid and summed B(M1)
of two remaining (higher in energy) scissors. Summation over all transition en-
ergies also gives an excellent agreement with the theory (last row of the Table).

Table 3. The energies E and excitation probabilities B(M1) of three scissors are
compared with experimental values Ē and

∑
B(M1) of two groups of 1+ levels in

164Dy [15].

Theory (WFM) Experiment (NRF)

E, MeV B(M1), µ2
N Ē, MeV

∑
B(M1), µ2

N Ē, MeV
∑
B(M1), µ2

N

2.20 1.76 2.20 1.76 2.60 1.67(14)
2.87 2.24

3.17 3.80 3.17 3.85(31)
3.59 1.56

2.86 5.56 3.00 5.52(48)
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Figure 2. Calculated (WFM) and experimental (NRF) mean exitation energies (a) and
summedM1 strengths (b) of the scissors mode. WFM1 – the sum of two highest scissors,
WFM2 – the sum of three scissors. The solid circle marks the experimental result for
164Dy when summed in the energy range from 2 to 4 MeV [15].

In the rest nuclei of N = 82 − 126 mass region an equally significant low
energy M1 strength was not detected in the NRF experiments. However, WFM
calculations predict the existence of comparable magnetic strength in all well-
deformed nuclei of this mass region (see WFM2 in Fig. 2). This prediction is
supported by the systematic calculations, performed in the frame of extended
RPA formalism – Quasiparticle-Phonon Nuclear Model (QPNM) [16], which
also predict the remarkableM1 strength below the conventional energy interval.
Mean exitation energies and summed B(M1) calculated for the energy range
from 2 to 4 MeV are presented in the Fig. 3 in comparison with WFM theory.
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in the energy range from 2 to 4 MeV, WFM2 – the sum of three scissors.
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Mean exitation energies and summed B(M1) calculated for the energy range
from 2 to 4 MeV are presented in the Fig. 3 in comparison with WFM theory.
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Triplet of Nuclear Scissors Modes

Theoretical prediction is supported by the recent experimental results of
photo-neutron measurements performed by the Oslo group. The authors revised
their previous data on the Scissors Resonance in 160−164Dy isotops obtained
by the Oslo method. It was found that integration over all transition energies
gives a total, summed strength value of about 5 µ2. However, if the NRF en-
ergy limits are applied, excellent agreement with the NRF results is obtained.
It is interesting to note that up to 60 percent of measured strength lies in the
energy region below 2.7 MeV. All this is in excellent agreement with our cal-
culations. The energy centroids and corresponding summed B(M1) given by
the WFM theory and by the QPNM calculations are compared with experimen-
tal results from the NRF, from photo-neutron measurements (Oslo) [5] and the
results obtained by the radiative capture of resonance neutrons [6] in Figure 4.
The results are shown for various energy intervals. As it is seen, the theoretical
results and experimental data of Oslo group are in very good overall agreement
for all three Dy isotopes. It is remarkable to which extent theory and experiment
agree taking the NRF as well as the Oslo averaging intervals. This yields strong
support to our interpretation that there are in fact not one but three intermingled
scissors modes at play: the standard one and two spin scissors which may be
predominately isovector spin-vector and isoscalar spin-vector in nature.
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4 Conclusion

The dynamical equations describing the nuclear collective motion are solved
without the artificial division into isovector and isoscalar parts. As a result a
new type (third one) of nuclear scissors is found. Three scissor modes are the
realization of three physically possible states formed by a pairwise combination
of four different kinds of objects (in our case, spin up and spin down protons and
neutrons). Three types of scissors can be approximately classified as isovector
spin-scalar (conventional), isovector spin-vector and isoscalar spin-vector. Both
spin scissors exist only due to spin degrees of freedom. The low-energy group of
1+ states in 164Dy finds explanation within WFM method as a branch of the scis-
sors mode (spin-vector isovector scissors). The calculated energy centroids and
summarized transition probabilities of even-even Dy isotopes are in a very good
agreement with the experimental results of Oslo group. The NRF data for 164Dy
are in excellent agreement with our calculations, whereas the data for 160,162Dy
are in a good agreement only with calculated centroids of two higher-lying states
falling into the conventional energy region of scissors mode. It is likely that the
2− 2.5 MeV energy region, where the concentration of M1 strength associated
with the spin scissors is expected, remains insufficiently studied. So we join the
conclusion of the authors of [5]: “It is highly desirable to remeasure the Dy iso-
topes by performing NRF experiments using quasi-monochromatic beams in the
interesting energy region between 2 and 4 MeV as done for 232Th.”
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