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Abstract. In Shell model studies the islands of inversion, which appear aside
with shape coexistence, derive due to shell merging [1]. A super shell is derived,
due to the merging of a spin-orbit (s.o.) like shell [2] with a harmonic oscillator
(h.o.) shell [3]. Shell merging can be realized in an SU(3) Model by coupling
the SU(3) irreps: (λ, µ)s.o. × (λ, µ)h.o..

1 Introduction

Recently the islands of shape coexistence have been predicted [3,4] using Proxy
SU(3) symmetry [5, 6]. The nucleon numbers of nuclei with shape coexistence
are predicted within the deformation:

βh.o. ≤ βs.o. (1)

The deformation parameter has been calculated through [7]:

β2 =
4π

5(Ar̄2)2
(λ2 + µ2 + λµ+ 3(λ+ µ)) (2)

with the use of the highest weight SU(3) irreps for each set of magic numbers
[9]. The condition (1) predicts the islands of shape coexistence on the nuclear
chart [8].

2 The Mechanism for Shape Coexistence

We suggest, that the natural mechanism for shape coexistence involves the fol-
lowing steps:

1. The number of valence protons or neutrons is sufficient to create largeQQ
interaction.

2. The deformation compresses the single particle energy gaps at the spin-
orbit magic numbers 14, 28, 50, 82.

3. Super shells from a h.o. magic number to a s.o. magic number: 2-14,
8-28, 20-50, 40-82, 70-126 are created, which come from the coupling of
the two shells.
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4. The super shells derive either the excited band, or the ground state band
of nuclei with shape coexistence.

This mechanism is free from enhanced proton-neutron interaction due to
the Federman-Pittel mechanism [10,11] and does not involve proton excitations
from a so like shell to the next so like shell. The mechanism emerges naturally
due to the preference of the QQ interaction to the ho shells.

3 Coupling of the SU(3) irreps

The super shells are described by the coupled irreps:

(λ, µ)s.o. × (λ, µ)h.o. → (λ, µ)coupl. (3)

The rules of the coupling of the SU(3) irreps are described in [12, 13]. In this
article I will review the method of Sidney Coleman.

The first is to decompose the product (λ, µ)× (λ′, µ′) to a sum of reducible
representations:

(λ, µ)× (λ′, µ′) = (λ, λ′;µ, µ′)⊕ (λ− 1, λ′;µ, µ′ − 1)

⊕ (λ, λ′ − 1;µ− 1, µ′)⊕ (λ− 1, λ′ − 1;µ− 1, µ′ − 1)⊕ ... (4)

The procedure stops whenever a zero appears in the right side of the equation.
The second step is to reduce the reducible representations

(λ, λ′;µ, µ′) =(λ+ λ′, µ+ µ′)

⊕
min(λ,λ′)∑
i=1

(λ+ λ′ − 2i, µ+ µ′ + i)

⊕
min(µ,µ′)∑
j=1

(λ+ λ′ + j, µ+ µ′ − 2j). (5)

The code of [14] has the ability to export all the resulting irreps from the
coupling. It has also the ability to derive the SU(3) Clebsch-Gordan (CG) coef-
ficients, that arise from the coupling [15, 16].

4 The Energy

The simplest Hamiltonian in Elliott SU(3) [17, 18] is

H = H0 −
χ

2
QQ , (6)

where H0 =

A∑
i=1

(
p2i
2m

+
1

2
mω2r2i ) and

QQ = 4C2 − 3L2 (7)
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with C2 being the second order Casimir operator of SU(3):

C2 = λ2 + µ2 + λµ+ 3(λ+ µ). (8)

If the excited 0+2 state of a nucleus with shape coexistence is derived by the
coupled irrep and the ground state by the spin-orbit like irrep, then

0+2 =
χ

2
(C2,s.o. − C2,coupl.) . (9)

Using rational values for the strength χ there is at least one coupled irrep, which
satisfies the data for the energy 0+2 of even-even nuclei with shape coexistence.

5 Conclusions

Shell merging is easy to be accomplished within a Fermionic SU(3) model. The
right coupled irrep will satisfy the energy of the 0+2 state of even-even nuclei and
will predict the right Jπ of even-odd or odd-even nuclei with shape coexistence.
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