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Abstract. Constructing microscopic effective interactions (‘optical potentials’)
for nucleon-nucleus (NA) elastic scattering requires in first order off-shell nucleon-
nucleon (NN) scattering amplitudes between the projectile and the struck target
nucleon and nonlocal one-body density matrices. While the NN amplitudes
and the ab intio no-core shell-model (NCSM) calculations always contain the
full spin structure of the NN problem, one-body density matrices used in tra-
ditional microscopic folding potential neglect spin contributions inherent in the
one-body density matrix. Here we derive and show the expectation values of
the spin-orbit contribution of the struck nucleon with respect to the rest of the
nucleus for 4He, 6He, 12C, and 16O and compare them with the scalar one-body
density matrix.

1 Introduction

The ab-initio NCSM has considerably advanced our understanding and capabil-
ity of achieving first-principles descriptions of low-lying states in light nuclear
systems [1–5], and has over the last decade taken center stage in the develop-
ment of microscopic tools for studying the structure of atomic nuclei. Apply-
ing this approach to nuclear reactions requires isolating important degrees of
freedom, thus reducing the many-body to a few-body problem and solving the
latter exactly. Isolating important degrees of freedom means projecting onto a
reduced Hilbert space and thus creating effective interactions between the de-
grees of freedom that are treated exactly. Since the 1960’s (or earlier), such
effective interactions have been constructed by fitting relevant experimental data
with usually complex functions, leading to the well known phenomenological
optical potentials (see e.g. [6–8]), which are local and energy-dependent. While
the large body of phenomenological work may keep some place in practical ap-
plications, an overarching goal is to construct such effective interactions (optical
potentials) from the same first principles that govern advances in many-body
approaches to nuclear structure.
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Starting from a multiple scattering expansion for NA scattering, the first or-
der term requires a folding integral over a nonlocal one-body density and off-
shell NN scattering amplitudes, where the Wolfenstein amplitude A determines
the central part of the folding potential and C the spin-orbit part (see e.g. [9–12]).
Calculations in [13,14] are carried out in this spirit. Here the non-local one-body
density matrix (OBDM) and the NN scattering amplitudes are based on the same
NN interaction, leading to a consistent ab initio first order folding effective po-
tential.

However, ‘traditional’ first order folding potentials developed in the 1990s
and used in [13,14] assume spin-saturation in nuclei and thus are most applicable
to closed shell nuclei. Starting from a NCSM, even a closed shell nucleus is not
spin-saturated; e.g. a fully converged calculation for 4He requires Nmax ≥ 12,
where Nmax is defined as the maximum number of oscillator quanta above the
valence shell for that nucleus. Though it is expected that closed shell nuclei are
almost spin-saturated, this will certainly not be the case for nuclei with partially
filled shells. In order to take into account the spin of the struck nucleon a for-
mulation to extract one-body scalar and spin-densities from ab initio OBDMs
needs to be developed. The scalar density is the one used in the ‘traditional’
folding interactions. From the spin-dependent densities, expectation values of
the scalar product of spin σi of the struck target nucleon with the momenta in-
herent in the nonlocal one-body density must be evaluated consistently with the
operator structure of the NN Wolfenstein amplitudes. A first step in this direc-
tion was made in [15] using a simple model density. Here we present scalar and
spin-dependent OBDMs extracted from NCSM calculations.

2 Theoretical Framework

The NN scattering amplitude M can be parameterized according to Wolfen-
stein [16] in terms of six linearly independent spin-momentum operators multi-
plied by scalar functions of three linearly independent momentum vectors. The
three vectors are the momentum transfer q, the total momentum of the system
KNN , and the normal to the scattering plane nNN ,

M(q,KNN , ε) =

= A(q,KNN , ε)1⊗ 1 + iC(q,KNN , ε)(σ
(0) ⊗ 1 + 1⊗ σ(i)) · n̂

+M(q,KNN , ε)(σ
(0) · n̂)⊗ (σ(i) · n̂)

+ (G(q,KNN , ε)−H(q,KNN , ε))(σ
(0) · q̂)⊗ (σ(i) · q̂)

+ (G(q,KNN , ε) +H(q,KNN , ε))(σ
(0) · K̂)⊗ (σ(i) · K̂)

+D(q,KNN , ε)
[
(σ(0) · q̂)⊗ (σ(i) · K̂) + (σ(0) · K̂)⊗ (σ(i) · q̂)

]
, (1)

where the scalar functions (A,C,M,G,H , and D) are the Wolfenstein ampli-
tudes. The amplitude D is zero on-shell due to parity conservation. The mo-
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menta are given as

q̂ =
(k′ − k)

|k′ − k|

K̂ =
(k′ + k)

|k′ + k|

n̂ =
K× q
|K× q| ,

(2)

with k and k′, the initial and final momentum of the projectile nucleon. A spin-
dependent space-fixed (sf) nonlocal one-body density between an initial A-body
wave function |Ψ〉 and a final A-body wave function |Ψ′〉, is written as:

(ρsf )
Ks

qs
(r, r′) =

〈
Ψ′

∣∣∣∣∣
A∑
i=1

δ3(ri − r)δ3(r′i − r′)
(
τ̂(i)
)Ks

qs

∣∣∣∣∣Ψ
〉
, (3)

where ri and r′i are the initial and final space coordinate of the particle i, and
r, r′ are parameters. Here τ̂(i) is the one body spin operator acting on particle i,
a spherical tensor of rank Ks = 0, 1. When Ks = 0, the spin operator becomes
the identity operator.

Ks = 0 :
(
τ̂(i)

)0
0

= 1

Ks = 1 :
(
τ̂(i)

)1
0

= σz

:
(
τ̂(i)

)1
−1 =

1√
2

(σx − iσy)

:
(
τ̂(i)

)1
1

= − 1√
2

(σx + iσy) . (4)

In order to remove the center-of-mass (c.m.) contribution, the non-local one-
body density matrix is evaluated in momentum space, where we can employ the
scheme given in detail in Ref. [17]. As function of the momentum variables p
and p′ the one-body density matrix (ρsf )

Ks

qs
(p,p′) reads

(ρsf )Ks
qs (p,p′) =

∑
nljn′l′j′

l+l′∑
Kl=|l−l′|

Kl∑
kl=−Kl

∑
Kk

〈KlklKsqs|Kk〉

× (−1)J
′−M ′

(
J ′ K J
−M ′ k M

)
Y∗ll

′

Kk (p̂, p̂′)

× (−1)−lĵĵ′(Ks + 1)ŝK̂sK̂l

 l′ l Kl

s s Ks

j′ j K

Rn′l′(p
′)Rnl(p)

× (−i)l+l′
〈
Aλ′J ′||(a†n′l′j′ ãnlj)

(K)||AλJ
〉
. (5)
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The term (a†n′l′j′ ãnlj)
(K) represents the single particle transition operator of

rank K, with K̂ =
√

2K + 1, and the corresponding reduced matrix elements
are characterized by the initial and final total angular momenta, J and J’, while
the remaining quantum numbers are summarized by λ, and λ′. These reduced
matrix elements are provided by NCSM calculations.

To obtain translationally invariant densities we introduce as variables the
momentum transfer q and the total momentum K,

q = p′ − p
K =

1

2
(p′ + p) . (6)

The spin-dependent one-body density (SOBD) is then derived in the same fash-
ion as outlined in [17], and we arrive at

(ρsf )
Ks

qs
(q,K) =

∑
nljn′l′j′

l+l′∑
Kl=|l−l′|

Kl∑
kl=−Kl

∑
Kk

〈KlklKsqs|Kk〉

×(−1)J
′−M ′

(
J ′ K J
−M ′ k M

)
(−1)−lĵĵ′(Ks + 1)ŝK̂sK̂l

×

 l′ l Kl

s s Ks

j′ j K

 (−i)l+l′

×
∑

nq,nK,lq,lK

〈nKlK, nqlq : Kl|n′l′, nl : Kl〉d=1RnKlK(K)Rnqlq (q)

×Y∗lKlq
Klkl

(q̂, K̂)
〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)
(K)
∣∣∣∣∣∣AλJ〉 . (7)

In order to determine the center of mass (c.m.) contribution, we follow the same
procedure as in [17]. The center of mass wavefunction is assumed to be entirely
in the 0s ground state of the nucleus. This results in the term ζc.m. being 0 for
the c.m. contribution. Thus, using the relative coordinates from Eq. (6) and
c.m. decomposition given by |Ψ〉 = |Ψint〉 × |Ψc.m.0s〉 we can separate the
c.m. contribution and obtain the translational invariant part of the density. We
obtained the center of mass contribution to be the same as in the scalar density.

3 Expectation Values of Spin Dependent One-Body Density

In order to evaluate the scattering amplitude of Eq. (1), expectation values of
operators involving the struck target nucleon, represented by the scalar product
of σ(i) with one of the momentum vectors, must be calculated. If this operator
is the unit operator, the result is a nonlocal scalar density, as e.g. used to cal-
culate the effective NA interaction in Ref. [13]. The term proportional to the
Wolfenstein amplitude A leads to the central part of the effective potential and
the one proportional to C to its spin-orbit part when scattering from a spin-zero
nucleus is considered. In general, the terms containing the scalar product of σ(i)
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with the momentum vectors of Eq. (2) need to be evaluated in the c.m. frame of
the nucleus. In the following, we will show explicit expressions for the expec-
tation value of σ(i) · n̂t.i, which is the momentum space representation of the
spin-operator. The subscript t.i. indicates that we use target c.m. momenta. We
define

Sn(r, r′) =

〈
Φ′

∣∣∣∣∣
A∑
i=1

δ3(ri − r)δ3(r′i − r)
[
σ(i) · n̂

]0
0

∣∣∣∣∣Φ
〉

=

〈
Φ′

∣∣∣∣∣
A∑
i=1

δ3(ri − r)δ3(r′i − r)
[
τ (i)

Ks=1 · n̂1
t.i.

]0
0

∣∣∣∣∣Φ
〉
. (8)

Here spherical components of the spin tensor τ(i) are used and coupled with
components of n̂t.i. to a tensor of rank 0. We rewrite Sn(r, r′) in terms of vari-
ables q and K following the same procedure as in Eq. (7). The final expression,
after expanding the projection, becomes

Sn(q,K) =∑
qs

(−1)−qs 〈1qs1− qs|00〉 4π

3

∑
nljn′l′j′

l+l′∑
Kl=|l−l′|

Kl∑
kl=−Kl

∑
Kk

〈Klkl1qs|Kk〉

(−1)J
′−M ′

(
J ′ K J
−M ′ k M

)
(−1)−lĵĵ′(2)ŝ1̂K̂l

 l′ l Kl

s s 1
j′ j K


(−i)l+l′

∑
nq,nK,lq,lK

〈nKlK, nqlq : Kl|n′l′, nl : Kl〉d=1RnKlK(K)Rnqlq (q)

∑
LN

〈Klkl1qs|LN〉
∑
ww′

1

(4π)2
l̂q l̂K1̂1̂K̂l1̂ 〈lq010|w′0〉 〈lK010|w0〉 lq 1 w′

lK 1 w
Kl 1 L

Yw′w
LN (q̂, K̂)

〈
Aλ′J ′

∣∣∣∣∣∣(a†n′l′j′ ãnlj)
(K)
∣∣∣∣∣∣AλJ〉 . (9)

While we concentrated in Eq. (8) on the expectation value of σ(i) · n̂, ex-
pressions for the expectation values of the other scalar products of σ(i) with the
unit vectors q̂ and K̂ can be derived in a similar fashion. However, we notice
that those expressions are scalar products between a pseudo-vector and a vector,
which are not invariant under parity transformations. Thus, their expectation
values between the ground states vanish, a fact we numerically verified.

For numerical studies, we only need to concentrate on the expectation values
represented by Eq. (9), which we want to call spin-orbit density. We contrast the
scalar nonlocal one-body density (Ks=0) with the density function given by the
expectation value of the spin-orbit operator (Ks=1) in the ground state of the
nucleus, which we call spin-orbit density.

The first example given in Figure 1 shows the two cases for the closed-shell
nucleus 4He and the open-shell nucleus 6He. The expectation values of the
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Figure 1. The expectation value of the scalar translationally invariant nonlocal one-
body density (Ks = 0) and the spin-orbit operator (Ks = 1) as function of q and K,
with the angle between them fixed at 90o, and evaluated in the ground state. All four
graphs use one body reduced matrix elements from NCSM calculations with Nmax=18
and ~ω=20 MeV based on the NNLOopt interaction [18] for the neutron distribution of
4He (left panels) and 6He (right panels).

scalar translationally invariant nonlocal one-body density (Ks = 0) and the
spin-orbit density (Ks = 1) as function of q and K, with the angle between
them fixed at 90o, are evaluated in the ground state of the corresponding nuclei.
All four graphs use as input one body reduced matrix elements from NCSM
calculations with Nmax = 18 and ~ω = 20 MeV based on the NNLOopt in-
teraction [18] for the neutron distribution of 4He (left panels) and 6He (right
panels). For 4He, the spin-orbit contribution to the density is at least three or-
ders of magnitude smaller than the scalar part. It is still interesting to notice that
its maximum strength is at about q = 1.5 fm−1, and 2K = 1.5 fm−1, away from
the maximum value of the scalar part that is at q = 0 and K = 0. For 6He, the
maximum value of the spin-orbit contribution is only two order of magnitude
smaller than the contribution from the scalar one. In this case, its maximum
strength is at about q = 0.7 fm−1, and 2K = 0.7 fm−1 away from q = 0 and
K = 0 where the maximum of the scalar density is located. This does show the
importance of the spin-orbit contribution to the density in an open-shell nucleus
like 6He.

To further investigate the effect of the spin-orbit contribution to the density,
we present the expectation value of the scalar translationally invariant nonlocal
one-body density (Ks = 0) and the spin-orbit operator (Ks = 1) as function of
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Figure 2. Same as Figure 1 but comparing the neutron distribution of 16O (left pan-
els) and 12C (right panels). The NCSM calculations were performed at Nmax=10 and
~ω=20 MeV using the NNLOopt interaction [18].

q and K, with the angle between them fixed at 90o and evaluated in the ground
state, for 16O and 12C, in Figure 2. All four graphs use as input one body re-
duced matrix elements from NCSM calculations with Nmax = 18 and ~ω = 20
MeV based on the NNLOopt interaction for the neutron distribution of 16O (left
panels) and 12C (right panels). These two sets of calculations are very inter-
esting, since while the scalar density looks similar in strength and distribution
over the momenta for both nuclei, the spin-orbit contribution looks quite differ-
ent. The maximum value of the spin-orbit contribution to the density is positive
and about two order of magnitude smaller then the maximum value of the scalar
density for 12C, at about q = 1 fm−1 and 2K = 1 fm−1, while for 16O, the
maximum value is negative and also about two order of magnitude smaller than
the scalar one, at about q = 0.7 fm−1 and 2K = 0.7 fm−1, and has another
positive contribution distributed at different values of q and K.

Looking at the absolute sizes of the scalar OBDs and the spin-orbit densities
could lead to a conclusion that the latter being at least two orders of magnitude
smaller may render them negligible in NA scattering calculations. For this con-
sideration it is useful to recall the on-shell condition q2 + K2 = 4k0

2 for NA
scattering, where k0 is the on-shell momentum in the NA frame and related to
the c.m. scattering energy. The on-shell conditions indicates that the maximum
values on the scalar OBD close to the origin in Figures 1 and 2 are far off-shell
in NA scattering. In Figure 3 we compare slices of the scalar and spin-orbit den-
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Figure 3. The expectation value of the scalar one-body density (Ks = 0) (solid) and
the spin-orbit density (Ks = 1) (dashed) as function of the momentum transfer q for
the fix value of K=0.37 fm−1 (with the angle between them fixed at 90o) for 6He
and K=0.5 fm−1 for 12C. The NCSM calculations were performed at Nmax=10 and
~ω=20 MeV using the NNLOopt interaction [18].

sities as function of q for fixed, small K values for 12C and 6He. Here we see
that for q-values of about 1.5 fm−1 both densities have the similar values, and
the effect on scattering observables may very well be visible. From Figure 3, we
can also notice that the spin-density is relative constant in 12C, while for 6He
has a maximum in momentum space at about 0.7 fm−1, and goes to almost zero
at about 2.5 fm−1 making the strength focused in momentum space, that mean
spread out in coordinate space.

Since the reduced matrix elements of the one body operators calculated in
NCSM are dependent of the parameter Nmax, we performed a series of calcu-
lations with different values of Nmax. We present in Figure 4 calculations of
the expectation values of the spin-orbit operator (Ks = 1) as function of q and
K, with the angle between them fixed at 90o and evaluated in the ground state,
for 4He and 6He, with Nmax = 10 and Nmax = 18. All four graphs use as in-
put one body reduced matrix elements from NCSM calculations with ~ω = 20
MeV. While the maximum contribution to the density is about 4.8 × 10−4 for
4He withNmax = 10, it increases only slightly to 4.9×10−4 forNmax = 18. In-
terestingly, for 6He, the strength of the spin-orbit contribution changes by about
15% (from 4.0×10−2 to 4.6×10−2) when increasing the NCSM space from
Nmax = 10 to Nmax = 18. By increasing Nmax, the strength of the distribution
also moves slightly towards lower values of q and K for 6He. Since including
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Figure 4. The neutron distribution of the spin-orbit operator expectation value, as a func-
tion of the momenta q and K, with the angle between them fixed at 90o, and evaluated in
the ground state. The densities used as input the reduced matrix elements from NCSM
calculations with two different values of Nmax = 10 and 18. All four calculations used
input from NCSM with ~ω = 20 MeV and are based on the NNLOopt interaction [18]
for 4He (left panels) and 6He (right panels).

more shells in the calculations drastically increasing the computation time, more
calculations are underway in order to have a better understanding of how many
shells are sufficient for converging results.

4 Summary and Outlook

We evaluated the expectation values of the scalar products of the spin of the
struck target nucleon with its three linearly independent target momenta, q̂, K̂,
and n̂. Only the expectation values of σ(i) · n̂, which correspond to the mo-
mentum representation of the spin-orbit operator, lead to a non-vanishing con-
tribution. Our calculations indicate that for open-shell nuclei like 6He and 12C
this spin-orbit density is considerably larger than for closed-shell nuclei like 4He
and 16O. Since the spin-orbit density for the stuck target nucleon enters the NN
scattering amplitude by means of the Wolfenstein amplitudes C and M , one
may expect additional contributions to the traditional folding effective interac-
tion for proton scattering of spin-zero nuclei in the central potential through the
Wolfenstein amplitude C and in the spin-orbit potential through the Wolfenstein
amplitude M . Corresponding work using the above developed expectation val-
ues is under way.
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