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Abstract. We present the new calculations of the symmetry energy in the
frame of a Modified Relativistic Mean Field (RMF) model where we take into
account excluded volume corrections to nuclear energy [1], proportional to nu-
clear pressure and absent in a standard RMF with point-like nucleons [2, 3]. In
particular we show how to determine/correct the saturation density which now
depends additionally from sizes of nucleon bags inside NM. The symmetry en-
ergy ES in our model has the similar corrections emerging from finite nucleon
volumes. It gives in our model the constraint between the ES and its derivative
L which is well satisfied by the empirical values of Es and L [4]. Fitting the
Es and L at the initial saturation point we solve the differential equations and
present the results of the energy and the symmetry energy with their derivatives
for high density and pressure. Equation of state in our modified RMF model
agrees with a semi-empirical estimate and is close to results obtained from ex-
tensive DBHF calculations with a Bonn A potential, which produce the EoS
stiff enough to describe neutron star properties (mass–radius constraint), espe-
cially the masses of “PSR J16142230” and “PSR J0348+0432”, most massive
(∼ 2M�) known neutron stars [5].

1 EoS with an energy transfer

How an energy transfer between quarks and the repulsive (or attractive) nuclear
medium, influence the Equation of State (EoS)? The complete answer will in-
volve a complicated calculation. However, we have found a model [1] where
we can compare two extreme scenarios (A) and (B). I our model the pressure
pH(%) between the hadrons acts on the bag surface similarly to the bag “con-
stant” B(%). In the scenario (A) the nucleon mass MN (%) = MN is a constant,
independent of density. A mass MN for finite pH(%) can be obtained from [1]:

MN (%)=
4

3
πR3[4(B + pH)−pH ]=E0

Bag
R0

R
−pHVN . (1)

The scaling factor R0/R comes from a well-known model dependence (E0
Bag∝

1/R0) in the spherical bag [6]. This simple radial dependence is now lost in
(1) and responsible for that is the pressure dependent correction to the mass of
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Figure 1. Energy transfer for constant nucleon mass and initial nucleon radius R0 = 0.7
fm for increasing nuclear density.

a nucleon given by the energy transfer ∆E = pHVN (ϱ). This term is identical
with the work WN = pHVN and disappear for the nucleon enthalpy

HN (ϱ) = E0
Bag

R0

R(ϱ)
∝ 1/R(ϱ). (2)

The nucleon radius R(ϱ) reflects a scale of a confinement of partons. Generally,
for increasing R(ϱ), HN (ϱ) (2) decreasing, thus part of the nucleon rest energy
is transferred from a confined region VN to an remaining space between nucle-
ons. For decreasing R, the HN increasing; this allows the constant nucleon mass
MN (1). In such a case, the quarks inside the bag need the additional (1) energy
transfer ∆E(ϱ) to keep the constant mass and the bag volume in the compressed
medium. The accompanying energy transfer above the equilibrium density ϱ0,
shown in Fig. 1, will provide the volume energies WN inside the bags. Finally,
the s.p. energy εq

N (ϱ) = EA/A, the nucleon mass and the radius R(ϱ) (1) can
be written as 1:

εq
N (ϱ) = εwal

N (ϱ) − ∆E(ϱ) (3)

Differentiating above equation one obtains the relation (4) which determines the
new saturation density ϱ0 = 0.162fm−3 for the compressibility K−1(ϱ0) =

1We extend in Egs.(3-6) the linear scalar-vector version of RMF [9] with ρ meson contributions
to the symmetry energy [10, 11]. Parameters in [9] were fitted to obtain equilibrium density ϱ0 =
0.149fm and RMF energy εwal

N (ϱ0) = 15.75MeV at saturation point.
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Figure 1. Energy transfer for constant nucleon mass and initial nucleon radius R0 =
0.7 fm for increasing nuclear density.

a nucleon given by the energy transfer ∆E = pHVN (%). This term is identical
with the work WN = pHVN and disappear for the nucleon enthalpy

HN (%) = E0
Bag

R0

R(%)
∝ 1/R(%). (2)

The nucleon radius R(%) reflects a scale of a confinement of partons. Generally,
for increasing R(%), HN (%) (2) decreasing, thus part of the nucleon rest energy
is transferred from a confined region VN to an remaining space between nucle-
ons. For decreasingR, theHN increasing; this allows the constant nucleon mass
MN (1). In such a case, the quarks inside the bag need the additional (1) energy
transfer ∆E(%) to keep the constant mass and the bag volume in the compressed
medium. The accompanying energy transfer above the equilibrium density %0,
shown in Figure. 1, will provide the volume energies WN inside the bags.

Finally, the s.p. energy εqN (%) = EA/A, the nucleon mass and the radius
R(%) (1) can be written as 1:

εqN (%) = εwal
N (%)−∆E(%) (3)

Differentiating above equation one obtains the relation (4) which determines
the new saturation density %0 = 0.162 fm−3 for the compressibility K−1(%0) =
250 MeV. Please note, at the saturation point the derivative dεqN (%)/d%)

∣∣
%=%0

=0

1We extend in Egs.(3-6) the linear scalar-vector version of RMF [9] with ρ meson contributions
to the symmetry energy [10, 11]. Parameters in [9] were fitted to obtain equilibrium density %0 =
0.149 fm and RMF energy εwal

N (%0) = 15.75 MeV at saturation point.
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but derivative of Walecka part εwal
N is εwal

N

′
(%0) > 0.

K−1(%0) = 9
(1− %0VN (%0))

VN
εwal
N

′
(%)

∣∣∣∣
%=%0

(4)

R0/R(%) = 1 + ∆E(%)/MN (%) (5)

where ∆E(%) = pHVN =
%2εqN

′
(%)VN (%)

(1− %VN (%))
(6)

For negative pressure pH the nucleon bag increases its radius (1), so the energy
is transfer in opposite direction - from bags to the meson field. Summarizing, our
model in scenario (A) consists of four self-consistent equations (3-6) including
usual equation for nucleon effective mass M∗ in a linear scalar field σ [3].

In order to show a thermodynamical consistency let us express the chemical
potential µqN by the uniform pressure p(%) = %2(εqN )

′
(%)(Hugenholz-van Hove

Theorem):

µqN = εN− pHVN +pHV−/A = εqN+ (pV )/A . (7)

In the uniform system of NM the grand canonical potential Ω = −pV with dΩ =
−pdV −AdµqN given by a relation (7), satisfies the following thermodynamical
relation for the average number of particles A,

A = −
[
∂Ω

∂µqN

]

V

=

[
∂(pV )

∂µqN

]

V

(8)

which proofs the thermodynamical consistency of our model.
The energy transfer ∆E, shown in Figure 1 was not taken into account in

scenario (A) in our previous findings [1]. Let us compare these new results
with energy transfer obtained in scenario (A) with scenario (B) obtained in [12]
where ∆E(%) = 0. In (B) the nucleon mass Mpr decreases with density (1)
by the volume work: Mpr(%) = MN − ∆E at the expense of maintaining
the volume of the bag. In contrast to the discussion in [1], the values of s.p.
energies εqN (%) and the Fermi energies EqF are similar in both scenarios because
the mentioned decrease of mass in scenario (B) is close to the decrease of s.p.
energy by the energy transfer (3,7) in (A). Therefore, both Fermi energies in (A)
and (B) are smaller than the Fermi energy EF = µN calculated for point-like
nucleons (7), by a volume energy pHVN (%) which weakens ”effectively” the
repulsion between nucleons.

2 Results for EoS

The EoS present in scenario (A) is shown in Figure 2 versus scenario (B).
Walecka [3] and DBHF calculations [8] with a Bonn A interaction are shown
for references. Results for pressure in both scenarios are similar, however criti-
cal densities are very different [12]. This difference illustrates Figure 4 in [12],
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Figure 2. Energy of NM above the equilibrium density for different models. Walecka [3]
and Dirac-Bruckner-Hartree-Fock (DBHF) [8] calculations with the Bonn A interaction
are shown as long dashes. Results for const nucleon mass (for R = 0.5 fm, 0.7 fm) are
denoted by dotted red lines and for const. nucleon radii (B) by solid blue lines.
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∣∣
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Figure 2. Energy of NM above the equilibrium density for different models. Walecka [3]
and Dirac-Bruckner-Hartree-Fock (DBHF) [8] calculations with the Bonn A interaction
are shown as long dashes. Results for const nucleon mass (for R = 0.5 fm, 0.7 fm) are
denoted by dotted red lines and for const. nucleon radii (B) by solid blue lines.

where the nuclear energy density %εqN (%) grows with density while the nucleon
energy density Mpr(%)/VN (%) in scenario (B) declines and finally both energy
densities for % ∼ 0.5 fm−3 are equal. For that density, nucleon bags with con-
stant R0 ∼ 0.7 fm starts to overlap in case (B) and multi-quark bags would be
possibly formed. The alignment density depends strongly on the nucleon radius,
in turn the points where B(%)=0 depend mainly from the starting value B(%0).
For example, for R0 = 0.75 fm the alignment density %al = 0.44 fm−3 almost
coincides the vanishing bag constant B(%0) = 100 MeV fm−3 (see Figure 3
in [12]). Therefore, scenario (B) with constant nucleon radius and the grad-
ual alignment of the energy densities inside and outside the bag suggests the
crossover transition below % = 0.45 fm−3. However, such a transition is not ob-
served in heavy ion experiments. Also in neutron stars [13], for that density of
star core we would expected for the quark core to decrease the radius of the star,
but such a decrease is not expected in comparison to lighter stars with a standard
neutron core. The scenario (A) with constant nucleon mass [12] is more realis-
tic then scenario (B) [1] without energy transfer. For constant nucleon mass in
scenario (A), a nucleon volume decreases with %, therefore nucleon bags do not
overlap for large density and the energy density of the nucleon increases due to
the energy transfer into nucleon bags.

64



3 Symmetry Energy in Dense Nuclear Matter

The symmetry energyEs is defined as the coefficient of the quadratic term in the
expansion of the energy per nucleon εqN (%) in neutron excess t = (%n − %p)/%:

Es =
∂2εqN (%)

2∂t2
= Ewal

s −
L

3

VN (%)

(1− %VN (%))

∣∣∣∣
%=%0

L

%0

.
= 3%

dEs
d%

∣∣∣∣
%=%0

(9)

where Ewal
s =

∂2εwal
N

∂t2
=

g2ρ
8m2

ρ

%+
P 2
F

6
√
P 2
F +M∗2

N

(10)

Calculations of the symmetry energy [10] Ewal
s without nonlinear contribution

proportional to L given by the equation (10) give the valueEwal
s = 24.8 MeV for

R0 = 0.7 fm, which is a few MeV too low from phenomenological extrapolation
Es

exp = 30.5 ± 3 MeV [14]. Differentiating equation (9) we get a following
expression for the second derivative of symmetry energy Ksym.

Ksym = %
∂Ewal

s

∂%

(1− %VN )

%VN
− %

1− %VN
∂Es
∂%

(1 + %2
∂VN (%)

∂%
)

∣∣∣∣
%=%0

(11)

The symmetry slope (9) parameter L = 88 MeV is higher then the phenomeno-
logically extrapolated value Lexp = 52.5± 20 MeV [14].

It is straightforward to include the additional coupling gρ to the ρmeson [10],
which contribute only to the Es of NM (9) and correct the energy of asym-
metric neutron matter. In our model the inclusion of meson ρ contributions
with ((gρ/mρ)

2 = 1.38 fm2) together with the pressure correction present
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Figure 3. Symmetry energy of NM above the equilibrium density for different nucleon
radii R=0.5fm, 0.7fm
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3 Symmetry Energy in Dense Nuclear Matter

The symmetry energy Es is defined as the coefficient of the quadratic term in the
expansion of the energy per nucleon εq
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Figure 4. The symmetry energy derivative L density as a function of the nuclear density
for R = 0.7fm and R = 0.5fm
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Figure 5. The second derivative of symmetry energy Ksym as a function of the nuclear
density for nucleon radii R = 0.7fm and R = 0.5fm

It is straightforward to include the additional coupling gρ to the ρ meson [10],
which contribute only to the Es of NM (9) and correct the energy of asymmet-
ric neutron matter. In our model the inclusion of meson ρ contributions with
((gρ/mρ)

2 = 1.38fm2) together with the pressure correction present in equa-
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which contribute only to the Es of NM (9) and correct the energy of asymmet-
ric neutron matter. In our model the inclusion of meson ρ contributions with
((gρ/mρ)

2 = 1.38fm2) together with the pressure correction present in equa-
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in equation (9) gives Es = 31 MeV for the slope L = 55 MeV – in very
good agreement with the phenomenological estimate Esexp = 30.5 ± 3 and
Lexp = 52.5 ± 20 MeV [14]. Also their density dependence shown in Figures
(3,4) agree with terrestrial and astrophysical constrains [4, 14]. We also present
the plot of the second derivative of symmetry energy Ksym given by equation
(11) in Figure 5.

4 Conclusions

We have shown, how nucleon volumes in compressed NM affect the nuclear
compressibility at equilibrium, keeping the constant nucleon mass thanks to the
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decrease of the nucleon volume in nuclear medium. It effectively corresponds to
pressure dependent modifications of a nuclear scalar potential. In our model the
nonlinear term originated from the finite sizes of nucleons with quarks degrees
of freedom. It allows to connect the nuclear compressibility with the saturation
density and determine their values from equation (4). Also the value of the
symmetry slope L is well fitted with the help of differential term in equation (9).
Therefore the presented model of compressed nucleons in dense NM is suitable
for studying Equation of State of nuclear matter and properties of neutron stars.
Not accidentally, in the widely used standard [2,11] RMF model with point-like
nucleons the good compressibility is fit by nonlinear modifications of a scalar
mean field with the help of two additional parameters. Thus, our results suggests
to reconsider these mean field parameters.
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