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Abstract. The Bohr Hamiltonian with a general sextic potential has been
solved for the critical point of the shape phase transition from spherical vi-
brator to prolate rotor. The parameters defining the potential are constrained
such that its form to manifest two degenerated minima, a spherical and a de-
formed one, separated by a maximum (a barrier). The eigenvalue problem is
solved by diagonalizing the Hamiltonian in a basis of Bessel functions of first
kind, which in turn are obtained by solving the same problem but for an infinite
square well potential. By analyzing the density distribution probability for the
states of the ground band and of the first β band, one can understand how the
shape of the nucleus is changing as the barrier is introduced and increased step
by step. Doing so, new interesting results have been found, as shape mixing
and shape coexistence, properties which otherwise are absent where there is no
separating barrier.

1 Introduction

The X(5) model [1] is an approximate solution proposed for the critical point
of the nuclear shape phase transition from spherical vibrator [2, 3] to axially
deformed rotor [4, 5], involving an infinite square well potential in β plus a
harmonic oscillator potential for γ. On the other hand, it is well established [1,
6,7] that a potential with two minima, a spherical and a deformed one separated
by a small barrier, would be more adequate for this critical point. Since X(5)
was proposed, many other solutions for the Bohr Hamiltonian [2, 8] have been
analyzed [9, 10] by trying to get a better description of this critical point or
to improve the agreement with the corresponding experimental data, but none
of these solutions have considered the barrier separating the two minima. A
first attempt [11, 12] was to use a quasi-exactly solvable sextic potential [13],
which depending on its parameters can have indeed a single spherical minimum,
a deformed one or simultaneously both of them. This potential proved to be
useful in describing an evolution from a spherical shape to a deformed one within
several isotope chains [11, 12, 15, 21–26], but due to the constraints imposed on
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its parameters such that to have analytical solutions, the barrier could not be
appropriately introduced. Therefore, a more general solution of this potential
has become necessary by relaxing the conditions for its free parameters. Thus, in
[14,15], the Bohr Hamiltonian with a general sextic potential has been solved by
numerical diagonalization using as a basis the solutions of the same Hamiltonian
but for an infinite square well potential. Through this method, finally the barrier
could be taken into account for this critical point and its effects carefully studied.

The goal of the this paper is to attract the attention on the present model in
the context of its recent applications to experimental data [15, 16], to highlight
its main achievements and to anticipate new possible developments and applica-
tions of the model for the topic of nuclear shape mixing and coexistence [17–20].

2 Model presentation and applications

In Refs. [14, 15], the equation of the Bohr-Mottelson Hamiltonian [2, 8]
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is solved for the critical point of the phase transition from spherical vibrator to
axially deformed rotor. In Eq. (1), β and γ are intrinsic deformation variables,
with β describing the deviation from sphericity and γ from axiallity. B is the
mass parameter, while Qk are the angular momentum projections in the intrin-
sic reference frame. The novelty of the model consists in offering a numerical
solution for the associated β equation,[
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Ψ(β) = εΨ(β), (2)

for a more general sextic oscillator potential,

v(β) = β2 + aβ4 + bβ6, (3)

and using as a diagonalization basis, the solutions of the X(5) model [1]:
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In Eq. (4), Jν are Bessel functions of the first kind of index
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4
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while αn is the nth zero associated to the boundary conditions given by βw. For
a better evidence of some properties as shape mixing and coexistence, it is more
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adequate in the present study to bring Eq. (2) to a Schrödinger form by changing
the function as Ψ(β) = β−2ψ(β):[

− ∂2

∂β2
+
L(L+ 1)

3β2
+ veff (β)

]
ψ(β) = εψ(β), (6)

where,

veff (β) =
2

β2
+ β2 + aβ4 + bβ6. (7)

Here, a and b are free parameters, while the coefficient of the harmonic term β2

is one due to a scaling property which is applied for energies [14]. The potential
has two minima if and only if a < 0 and b > 0. Examples of potentials (3) and
(7) can be seen in Figure 1 with parameters fitted to reproduce experimental data
for certain nuclei. Graphical representations of the corresponding deformation
probability distribution for the ground state and the first excited 0+ state can be
found in Refs. [16, 27]. A general description of various model cases made in
Refs. [14, 15] as a function of the barrier height, revealed instances with shape
coexistence, shape mixing, and shape fluctuation. Another relevant signature for
these phenomena, as the monopole transition probability 〈0+1 |β2|0+2 〉 [14, 15],
has been involved in the study.

The present model was first time applied for the experimental data of 238Pu,
152Nd and 170Hf [14] trying to find some candidates for the critical point of the
phase transition from spherical vibrator to axially deformed rotor, but also to
point out the possibility of the model to describe shape mixing and shape coex-
istence. Because the results for a small barrier proved to be similar with those
of X(5) where the barrier was neglected, further investigations were focused on
increasing the height of the barrier and finding candidate nuclei for shape mix-
ing and coexistence phenomena. Therefore, a first notable success of the model
in this new direction was achieved in [15], where the energy spectra, the B(E2)
transitions and the monopole transition between the first excited 0+ and ground
state of the 76Kr nucleus, known for manifesting shape mixing and coexistence,
were very well reproduced. The fitted parameters for 76Kr, as well as the calcu-
lated value of the monopole transition 〈0+1 |β2|0+2 〉, indicated that this nucleus is
a good candidate for the case of shape coexistence with mixing [15]. Recently,
new candidates have been found, namely 72,74,76Se [16], for the same cases of
shape mixing and coexistence in the same state. Moreover, in [16], a shape
evolution was observed in the ground band as a function of the total angular mo-
mentum. For example, analyzing the density distribution probabilities, one can
see that the ground state prefers the less deformed minimum, while the 4+ is al-
ready above the second more deformed minimum. Because the numerical results
for these nuclei are already presented and largely discussed in [14–16], here we
only have resumed ourselves to attract the attention on the main achievements
of the model and of its possible future applications. On the other hand, in [16]
the minima for the isotopes of Se are given in scaled values of the β deforma-
tion, while in [15] these values for 76Kr have been omitted to be presented. The

70



Shapes Coexistence in the Frame of the Bohr Model

usually used quadrupole deformation values are especially in demand in the co-
munity of researchers studying shape coexistence phenomena with microscopic
approaches. Therefore, in Figure 1, are plotted the potentials for 72,74,76Se and
76Kr and this time by indicating the quadrupole deformations for the two min-
ima, which can be further compared with data coming from microscopic models.
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Figure 1. Potentials given by Eq. (3), dashed curve, and Eq. (7), continuous curve, are
plotted as a function of the β quadrupole deformation for 72,74,76Se and 76Kr.

As can be seen from Figure 1, the present model [14, 15] was design to
describe shape mixing and shape coexistence between spherical and deformed
minima. The model can be further generalized to describe coexistence of two
deformed shapes by considering high order terms as β8 in the expression of the
β potential (3). The diagonalization method developed in [14, 15] could be very
easily applied also to such potentials.
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3 Conclusion

The Bohr model was solved numerically for a general sextic potential [14, 15]
using as a basis solutions of the X(5) model [1]. Taking the advantage of the
barrier introduced to separate the spherical shape from the deformed one, new
phenomena could be studied in the frame of the Bohr model as shape mixing
and shape coexistence. Recent applications for 76Kr [15] and 72,74,76Se [16],
suspected for manifesting such phenomena, revealed promising results and con-
firmed some of the model predictions. Also, new applications of the model for
some Mo isotopes, namely 96,98,100Mo, are to be published [27]. This recent
study shown us that there are still many candidate nuclei for the present model
which have to be tested in the future works. Moreover, the present model can be
further improved by adding higher order terms in β to the potential. In this way
shape mixing and shape coexistence between oblate and prolate deformations
would be more accurately described, opening a new door for new applications.
Another important aspect is that the model being a phenomenological one, needs
support confirmation also from microscopical models. Thus, in the present pa-
per, quadrupole β2 deformation values are given for 76Kr [15] and 72,74,76Se,
offering the possibility to make connections with microscopic models.
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