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Abstract. The aim of this paper is to investigate effects of the Pauli principle
on the potential energy of a two-cluster system within a microscopic method.
We analysed eigenvalues and eigenfunctions of the two-cluster potential energy
matrix constructed with oscillator functions for the following nuclei: 6Li= α+
d, 7Li= α+3H, 7Be= α+3He, 8Be= α + α, 5Li= α + p, and 5He= α + n.
In our calculations we used the Minnesota potential, the modified Hasegawa-
Nagata potential and Volkov N2 potential as a nucleon-nucleon potential. In
general, the eigenvalues of the folding and exact cluster-cluster potential do
not diverge considerably. However, the dependence of the exact cluster-cluster
potential on the number of the invoked functions reveals a number of resonance
states which are absent in the case of folding potential. Such resonance states
are mainly localized in the region of small distances between clusters.

1 Introduction

This report is devoted to study of two-cluster potential energy for the light nuclei
with a pronounced two-cluster structure within a microscopic method that takes
into account the internal structure of the interacting clusters, correctly treats the
Pauli principle and relays on a complete set of the oscillator functions to describe
relative motion of clusters. This method is an algebraic version of the resonating
group method [1]. The resonating group method (RGM [2]) is a powerful tool
for studying properties of two-, three- and many cluster systems. This method
works perfectly for describing both bound states and different types of reac-
tions. The main advantages of the method are that (i) it takes into account the
internal structure of interacting clusters and (ii) correctly treats the Pauli prin-
ciple. An important peculiarity of the RGM is that being applied to two- or
three-cluster systems it reduces in a self-consistent way the A-body problem to
a two- or three-body problem. RGM strongly relies on the translation invariant
many-body shell model as this model supplies the wave functions describing the
internal structure of clusters. It is natural also to use oscillator wave functions
for describing the inter-cluster motion.

The Pauli principle has been investigated many times and from different
points of view.Many results have been obtained revealing effects of the anti-
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symmetrization on the structure of bound states and dynamics of reactions in
two- and three-cluster systems. Meanwhile, we are going to demonstrate that
some interesting properties of the Pauli principle were hidden and we are going
to reveal some new interesting features. We will demonstrate how the antisym-
metrization affects cluster-cluster potential energy.

It is important to notice that the total interaction of two-cluster system origi-
nates from nucleon-nucleon interaction and also from the kinetic energy opera-
tor. The influence of the Pauli principle on the kinetic energy of relative motion
of two clusters has been investigated in Refs. [3–6]. In the present paper will
consider only the first part of the cluster-cluster potential.

2 Method

A wave function of A-nucleon systems for the partition A = A1 +A2 is

ΨLM = Â {[ψ1 (A1, s1, b)ψ2 (A2, s2, b)]S fL (q)YLM (q̂)} , (1)

where ψν (Aν , sν , b) is a fully antisymmetric function, describing internal struc-
ture of the νth cluster, Â is the antisymmetrization operator permuting nucleons
belonging to different clusters and q is the Jacobi vector determining distance
between interacting clusters. We assume that we deal with the s-clusters only,
it means that the intrinsic orbital momentum of each cluster equals to zero. The
total spin S is a vector sum of the individual spins s1 and s2.

Inter-cluster wave function fL (q) is a solution to the integro-differential
equation. This equation can be much easily solved, when the function (1) is
expanded into a complete set of the the antisymmetric cluster basis functions

|nL〉C = Â {[ψ1 (A1, s1, b)ψ2 (A2, s2, b)]S ΦnL (q, b)YLM (q̂)} , (2)

where n is the number of radial quanta, b is the oscillator length b. Functions
|nL〉C are normalized not to unity, but to eigenvalues ΛnL of the norm kernel:

〈nL|ñL〉C = ΛnLδn,ñ.

By using the cluster basis functions (2), one obtains the two-cluster Schrödinger
equation in the form∑

m=0

{〈
nL
∣∣∣Ĥ∣∣∣mL〉

C
− EΛnLδn,m

}
CmL = 0, (3)

where
〈
nL
∣∣∣Ĥ∣∣∣mL〉

C
is a matrix element of a microscopic two-cluster Hamil-

tonian, CnL is the expansion coefficient.
If we omit the antisymmetrization operator in the expression for the wave

function, we have got the so-called folding approximation.

Ψ
(F )
LM = [ψ1 (A1, s1, b)ψ2 (A2, s2, b)]S f

(F )
L (q)YLM (q̂) . (4)
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This approximate form is valid when the distance between clusters is large and
effects of the Pauli principle is negligible small. The exact two-cluster poten-
tial is a nonlocal operator, as opposed to the folding cluster-cluster potential.
The idea is to compare the exact and folding two-cluster potentials via sepa-
rable representation of the potentials. As a tool for this study we employ the
method suggested in our recent paper [7]. We will construct matrix of poten-
tial energy and then analyze its eigenvalues and eigenfunctions of the matrix.
The eigenfunctions will be analyzed in the oscillator, coordinate and momentum
representations. Involving three different spaces allows us to get more complete
picture on the nature and properties of potential energy eigenfunctions.

Having constructed matrix of potential energy
∥∥∥〈nL ∣∣∣V̂ ∣∣∣mL〉∥∥∥ of dimen-

sion N ×N , we can calculate eigenvalues λα (α=1, 2, . . . , N ) and correspond-
ing eigenfunctions {Uαn } of the matrix. Diagonalization of the potential energy
matrix generates a new set of inter-cluster functions φα and two-cluster wave
functions Ψα

φα (q, b) =
∑
n

UαnΦnL (q, b) (5)

Ψα = Â {ψ1 (A1)ψ2 (A2)φα (q, b)YLM (q̂)} . (6)

The functions φα (q, b) and eigenvalues λα enable us to construct inter-cluster
nonlocal potential

V̂N (q, q̃) =

N∑
α=1

φα (q, b)λαφα (q̃, b) . (7)

In what follows we are going to study properties of the eigenvalues and eigen-
functions of the potential energy operator in the oscillator representation {Uαn },
coordinate φα (q, b) and momentum φα (p, b) spaces.

For a two-body case, the eigenfunctions φα (q, b) or φα (p, b) would imme-
diately define a wave function and t-matrix, as it was demonstrated in Ref. [7].
However, in two-cluster systems the antisymmetrization is known to affect the
kinetic energy and norm kernel and thus the kinetic energy and norm kernel
participate in creating the effective cluster-cluster interaction as well.

In the present paper we consider only the part of the cluster-cluster potential
generated by the nucleon-nucleon potential with the focus on the Pauli effects.
The first effect of the Pauli principle on two-cluster systems is connected with
appearance of the Pauli forbidden states, which correspond to zero eigenvalues
of the norm kernel. The second effect of the Pauli principle is related to the
eigenvalues of the Pauli-allowed states which are not equal to unity. It has been
shown in [3] that the kinetic energy operator of two-cluster relative motion mod-
ified by the Pauli principle generates an effective interaction between clusters. It
is interesting to analyze how the eigenvalues of the norm kernel change potential
energy of two-cluster system.
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3 Results and Discussion

The object of the investigation is the lightest nuclei of p-shell with a dominant
alpha-cluster channel shown in Table 1.

Table 1. List of nuclei and two-cluster configurations

Nucleus 5He 5Li 6Li 7Li 7Be 8Be
Configuration 4He+n 4He+p 4He+d 4He+3H 4He+3He 4He+4He

We employ three nucleon-nucleon potentials which have been often used
in different realizations of the cluster model. In our calculations we involve the
Volkov N2 (VP) [8], modified Hasegawa-Nagata (MHNP) [9,10] and Minnesota
(MP) [11] potentials. Coulomb forces are also involved in calculations and
treated exactly. For the sake of simplicity we neglect the spin-orbit forces, thus
the total spin S and the total orbital momentum L are good quantum numbers.
Oscillator length b is selected to optimize energy of the lowest decay thresh-
old for each nucleus and for each NN potential. In what follows, it is assumed
the energy of two-cluster systems is determined with respect to the two-cluster
threshold.

The optimal values of b are shown in Tab 2.

Table 2. Oscillator length b in fm for different nuclei and different potentials.

Nucleus VP MHNP MP
5He, 5Li 1.38 1.32 1.28
6Li 1.46 1.36 1.31
7Li, 7Be 1.44 1.36 1.35
8Be 1.38 1.32 1.28

Figure 1 shows the eigenvalues of the exact and folding potential energy
matrix generated by the MHNP for the 1− state of 7Be.

We can observe from Figure 1 that the eigenvalues of the potential energy
matrix calculated with antisymmetrization are very close to those determined in
the folding approximation. The lowest eigenvalues almost coincide indicating
that both potentials have the same depth. One can also see that exact potential
is less attractive at the range 5 < α < 30. For α > 50 the exact potential is
very close to the folding potential. Similar behavior of eigenvalues is observed
for all lightest nuclei of the p-shell and for all NN potentials involved in our
calculations.

In Figure 2 we show dependence of the eigenvalues λα on the number of
oscillator functions involved in calculations. These results are obtained forLπ =
1− state of 7Be with the MHNP.
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Figure 1. Eigenvalues of the exact (solid circles) and folding (open circles) potential
energy matrix for the 1− state of 7Be. Results are obtained with the MHNP.

Figure 2. Eigenvalues of the exact (a) and folding (b) potential energy matrix as a function
of the number N of oscillator functions involved in calculations. Results are obtained for
the 1− state in 7Be with the MHNP.

As can be seen from Figure 2, the dependence of eigenvalues of the exact
potential on the number of functions exhibits resonance behavior. Contrary, none
of the eigenstates of the folding potential has a resonance behavior.

In Figure 3 we compare eigenvectors for 8Be and 7Be with and without an-
tisymmetrization for the MHNP.

One can see that they are quite different. The Pauli principle makes zero the
first 50 expansion coefficients Uαn . So, we can conclude that the eigenfunctions
of the exact potential corresponding to non-resonance values of α is suppressed
at the range n < 50 due to the influence of the Pauli principle. The eigenfunc-
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Figure 3. The eigenfunctions of the exact (solid circles) and folding (open circles) poten-
tial energy in oscillator representation for the 1− state in 7Be (left panel) and the 0+ state
in 8Be (right panel). Results are obtained with the MHNP.

tions of the folding potential have a maximum at lower number of quanta than
the eigenfunctions of the exact potential. It is also worth noting that different
behaviour of the eigenfunctions of the folding potential at small values of n for
7Be and 8Be is caused by different values of orbital momenta.

Figure 4 presents the eigenfunctions of the potential energy operator for the
0+ state in 8Be in the momentum space for α = 1, 2 and 3.

A huge repulsive core in the MHNP and the Pauli principle make eigenfunc-
tions φα (p) to vanish in a large range of 0 < p < 10 fm−1.
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Figure 4. The eigenfunctions of the potential energy operator for the 0+ state in 8Be in
the momentum representation. Results are obtained with the MHNP.
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Figure 5. Wave functions of the resonance states in 8,7Be and 6Li in oscillator represen-
tation (left panel) and momentum representation (right panel). Results are obtained with
the MHNP

Now let us consider wave functions of trapped and resonance states in the
two-cluster systems. Wave functions of the resonance states in 8,7Be and 6Li in
oscillator and momentum representation are shown in Figure 5.

We can conclude that the eigenfunctions of resonance states describe a com-
pact configuration, because they are localized at low values of oscillator quanta
and momentum.

Eigenvalues of the potential energy matrix generated by the Volkov N2 po-
tential are shown in Figure 6 for the 1− state of 5He.
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Figure 6. Eigenvalues of the exact (solid circles) and folding (open circles) potential
energy matrix for the 1− state of 5He. Results are obtained with the VP.
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Figure 7. Eigenvalues of the exact (right pane) and folding (left panel) potential energy
matrix as a function of the number of oscillator functions involved in calculations. Results
are obtained for the 1− state in 5He with the VP.

The eigenvalues of the exact VP differ from those of the folding potential
at a single point α = 1. The eigenvalue λα=1 corresponds to a “trapped” state.
This conclusion follows from Figure 7, where the dependence of the eigenvalues
of the potential energy matrix as a function of the number of oscillator functions
involved in calculations is shown for the 1− state in 5He.

Figure 7 shows fast convergence of the first eigenvalue of the exact potential
energy matrix.

Wave functions of the trapped state in 5He, 6Li and 7Be in oscillator repre-
sentation are shown in Figure 8.
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Figure 8. Wave functions of the trapped state in 5He, 6Li and 7Be in oscillator represen-
tation. Results are obtained with the VP.
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The wave functions of the trapped state have an exponential asymptotic be-
havior. Thus, there is a full resemblance of these functions with a true bound
state wave function which is usually observed in coordinate space. The asymp-
totic part of the wave functions of resonance states has an oscillatory behavior
(Figure 5). The node of the trapped state wave functions appears due to the
orthogonality of this state to the Pauli forbidden states in two-cluster systems.

It is interesting to note that a trapped state in the VP appears only for the
cluster configurations characterized by the eigenvalues of the norm kernel Λn >
1. Namely, the VP generates a “trapped” state in the states of normal parity in
5He, 5,6,7Li and 7Be. MP also produces a “trapped” state in 6Li.

4 Conclusion

We investigated effects of antisymmetrization on the potential energy of cluster-
cluster interaction within a microscopic method – an algebraic version of the res-
onating group method. For this aim we have studied eigenfunctions and eigen-
values of the potential energy matrix, calculated within a basis of the cluster
oscillator functions. It was shown that the eigenvalues of the potential energy
calculated with the full antisymmetrization do not differ much from the eigen-
values obtained in the folding approximation. However, the eigenfunctions in
those cases are quite different.

Dependence of eigenvalues of the exact potential on the number of functions
exhibits resonance behavior, contrary to the eigenvalues of the folding poten-
tial. The Pauli exclusion principle can produce trapped and resonance states in
two-cluster potential energy. Both trapped and resonance states have a compact
wave function of two-cluster systems. This compactness is observed in the oscil-
lator, momentum and coordinate spaces. The trapped states have an exponential
asymptotic tail, while the resonance states have an oscillating asymptotic tail.
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