
NUCLEAR THEORY, Vol. 38 (2019)
eds. M. Gaidarov, N. Minkov, Heron Press, Sofia

The Bizarreness of Symmetry Energy
Behavior in Peculiar Cases of Meson
Interactions

N. Zabari

The Henryk Niewodniczaski Institute of Nuclear Physics,
Polish Academy of Sciences, 31-342 Krakow, Poland

Abstract. Symmetry energy of nuclear matter is one of the most essential pa-
rameters in the field of nuclear astrophysics. There are common types of meson
interactions that have been profoundly investigated within RMF framework over
recent years (ρ-σ or ρ-ω [1, 2]). In this article, yet another cross-scalar terms of
the kind σ-δ have been introduced. Such cross-couplings may greatly modify
the symmetry energy and its slope. An interesting point is that one may ob-
tain desired values of a slope, and thus the values consistent with observations
and experimental data, by playing coupling constants of δ meson field and a
newly adopted σ-δ meson interaction. A broad research has been performed
of wide coupling constant range where most extreme cases may be seen. The
results indicate a unique bizarreness of symmetry energy under such distinctive
conditions.

1 Introduction

The density dependence of symmetry energy at supra-saturation densities is still
very uncertain due to lack of experimental measurements at terrestrial laborato-
ries that would reveal the high-energy matter properties. Theoretical models, on
the other hand, show rather divergent results. Indeed, the recent work of Li et
al. [3] shows the variety of symmetry energy behavior at densities higher than
saturation density n0 = 0.16 fm2 for numerous models. The variety comes from,
inter alia, poor knowledge of the isospin dependence of strong interactions. The
observation of neutron stars merger event GW170817 by LIGO/Virgo collabo-
ration [4] in 2017, supplied the research on internal neutron star structure with
some constraints. The measurements based on GW170817 indicate rather stiff
equation of state (EOS), therefore higher maximum mass of the star family. In
fact, the neutron stars with the mass above 2M� have been already observed
(PSRJ0348+0432 [5], PSRJ2215+5135 [6]). Another constraint that the neu-
tron star merger provided is the upper and lower limit of the star radius. It was
shown by Fattoyev et al. [7] that the upper limit for the radius of 1.4M� neu-
tron star is R = 13.76km. On the other hand, Bauswein et al. [8] show the
lower limit for 1.6M� neutron star for which the radius of the star should be
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not less than 10.64 km. In their work, it was also indicated that the maximum
radius Rmax, i.e. the radius at which maximum mass Mmax of the star family is
reached, should be greater than about 9.6 km. The radius constraints are vital for
the nuclear matter parameters. Indeed, it was shown that the neutron star radii
has clear connection with symmetry energy slope L [9]. The authors obtained
the results of the slope to be between 43 and 52 MeV for a radius of 1.4M�
neutron star being in the range 11–13 km. The slope is defined as derivation
of symmetry energy S2 in regards to density given at n0. Therefore the sym-
metry energy behavior in saturation vicinity rules out the value of the slope.
Notwithstanding, the density dependence of symmetry energy at higher densi-
ties remain disputable despite observational and experimental data which makes
it one the major theoretical challenge for nuclear astrophysics branch. In this
work we show the results of symmetry energy behavior at supra-saturation den-
sities when the meson crossing of the scalar-scalar kind is included. We show
that such crossed terms can greatly modify symmetry energy.

2 Model and Parametrization

In our calculations, we use the Relativistic Mean Field (RMF) theory that pro-
vides an elegant framework for nuclear matter description. We start with defin-
ing Lagrangian from which the equations of motions for mesons and nucleons
can be derived. The model consists of nucleons and four mesons. Here we show
the interaction part of the Lagrangian Lint only. The model description and total
Lagrangian can be found in [10].

Lint = gσσψ̄ψ−gωωµψ̄γµψ−
1

2
gρ~ρµψ̄γ

µ~τψ+gδ~δψ̄~τψ−U(σ)+g̃ασ
α~δ2. (1)

The interaction Lagrangian includes the coupling constants gσ , gω , gρ, gδ for
σ, ω, ρ and δ meson fields respectively, U (σ) = 1

3b m(gσσ)
3

+ 1
4c (gσσ)

4

represents σ meson self-interaction, and gα is σ-δ meson coupling constant. The
equations of motions (not shown in this paper, but their full forms can be found
in [10]), allows expressing energy density in the following form
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The σ-δ meson interaction sits in the term with gα that is connected with g̃α by

gα =
g̃α

4gασg
2
δ

. C2
i =

g2i
m2
i

for i = σ, ω, ρ, and δ due to density-independent cou-

pling constants. The m∗
n and m∗

p are effective masses for neutrons and protons
respectively. Both are depended on σ and δ fields

m∗
p = m− gσσ̄ − gδ δ̄3, (3)

m∗
n = m− gσσ̄ + gδ δ̄3. (4)

Now, the symmetry energy is defined as the second derivative of energy density
per particle in respect to proton fraction x

S2(n) =
1

8n

∂2ε (n, x) /n

∂x2

∣∣∣∣
x= 1

2

. (5)

The analytical calculation leads to the form of symmetry energy that for con-
sidered model is depended on C2

ρ , C2
δ and gα. Therefore, these three constants

from isevector channel becomes an essential set that should be properly selected
in order to obtain the constraints given by experimental and observational data.
Complete formalism has been derived in [10]. The constrains of symmetry en-
ergy at the vicinity of saturation density n0 are well determined based on heavy-
ion experiments and nuclear structure observables [11]. The binding energy
of symmetric matter B = ε(n, 1/2)/n

∣∣∣
n0

= −16 MeV, the compressibility

K = 230 MeV and symmetry energy at saturation S2 = 30 MeV allows us to
find the coupling constants of the considered model. Nevertheless, the model
consist of more coupling constants than empirical data. One of them is C2

σ

which is chosen to obtain stiff equation of state and consequently higher max-
imum mass of the star family [12]. Three isovector couplings are adjustable in
the way that C2

ρ and C2
δ are connected to keep S2 = 30 MeV, where C2

δ together
with third coupling of σ-δ meson interactions gα can be modified to receive the
desired slope of symmetry energy L. Recent studies shows the slope to be in the
range 40–60 MeV [13]. In this work we show that the additional meson-meson
interactions of the σ-δ kind can greatly modify symmetry energy and thus we
can obtain the slope in a wide range of its value.

3 Results

The manipulation of coupling constants C2
δ and gα allows obtaining the desired

value of the slope of symmetry energy. In the work [10] such investigation on
these couplings has been already done for specific gα which was defined and
kept constant for two cases, linear α = 1 and quadratic α = 2 interactions.
Namely g1 = −0.009 fm−1 and g2 = −0.004. In this paper, we investigate
behavior of symmetry energy and its slope for a broader range of C2

δ and gα.
Particularly, we mostly focus on the role of gα. The specific correlation was
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found for these two couplings. We noticed that it is possible to find the same
value of the slope L for different values of gα and C2

δ . Indeed, the same value
of L is obtained for high C2

δ and gα close to zero and for smaller C2
δ and gα

having lower values. In order to obtain identical L, manipulation has to be very
precise. Another feature is that when considering only negative values of gα,
the higher these two parameters, the slope becomes lower, whereas for negative
gα such combination gives high values of L. Positive gα always give high slope
(95 MeV and higher), no matter of how much is C2

δ . The slope L = 95 MeV can
be obtained also for negative gα. In this case, with increasing C2

δ , the value of L
drops which makes it a perfect candidate to attain the slope range 40–60 MeV.

In Figure 1 we show the density dependence of symmetry energy for 22
various RMF models, all being based on the same Lagrangian and the same
isoscalar sector parameters, but with different values of the parameters from
isovector sector. The figure is presented for illustration purposes. Due to the fact
that only negative values of gα lead to smaller L, in the further considerations we
consider only gα < 0. In Figure 2, the density dependence of symmetry energy
is presented for constantC2

δ and various gα. Both diagrams are calculated within
quadratic interaction α = 2. It can be seen that, for high values of C2

δ = 10 fm2

(upper diagram), small changes of gα (from -0.0015 to -0.0009) are needed to
obtain a wide range of the slope. For lower C2

δ = 5 fm2 (lower diagram), lower
values of gα are required (from -0.0033 to -0.001) to receive similar range of the
slope as in the upper diagram. The choice of the parameters has its explanation.
Indeed, taking even lower gα, the slope becomes negative. For example, for the
C2
δ = 10 fm2, already gα = −0.0016 gives slope L = −3.8 MeV. The upper

limit, on the other hand, is justified on the basis of conclusions regarding too
high values of the slope for negative values of gα. Taking gα = −.001 when
C2
δ = 10 fm2, the slope becomes greater than 100 MeV.
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Figure 1. Symmetry energy as a function of density for various C2
δ and gα.
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Figure 2. Symmetry energy as a function of density for various gα and C2
δ = 10 fm2

(upper diagram) and C2
δ = 5 fm2 (lower diagram).

In Figure 3 we present visually the influence of gα on the slope. The figure
shows the relation between these two quantities for C2

δ = 10, 8, 5 and 3 fm2.
It reveals the strength of coupling constant of the additional meson-meson inter-
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Figure 3. Relation between slope L and the coupling constant of scalar-scalar meson
interaction gα for four different C2

δ =const.
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action to the standard RMF 1. Taking high coupling C2
δ , small range and small

changes of gα are required to acquire quite wide range values of the slope. For
C2
δ = 10 fm2, small gα range gives the slope L = 5-95 MeV whereas for

C2
δ = 3 fm2, the manipulation of gα has to be much wider. One may see that

three times bigger range of gα is necessary than for the case with the highest
C2
δ . Still, the slope is only L = 65–95 MeV. Even more precise choice of C2

δ

and gα, despite the fact that gα changes are on the fourth decimal place, to attain
the exact values of the slope. The more precise the coupling constants, the more
exact L can be obtained.

4 Conclusion

In this paper, we have shown the effect of scalar-isoscalar σ meson with scalar-
isovector δ meson interaction on the symmetry energy. In general, in models
based on RMF approach, the symmetry energy tends to increase with increas-
ing density. The introduction of meson interaction of σ-δ kind allows getting
a broad spectrum of S2 behavior, from hard to super-soft, by manipulation of
isovector coupling constants. The models for which values of the slope of sym-
metry energy are in the range 40-60 MeV were investigated towards neutron
star properties. The maximum masses of the star family are above 2M� for all
models, and maximum radii are no less than 11 km which is consistent with the
9.6 km constrain.
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[10] N. Zabari, S. Kubis and W. Wójcik, Phys. Rev. C 99 (2019) 035209.
[11] C.J. Horowitz et al., J. Phys. G 41 (2014) 093001.
[12] S. Kubis and M. Kutschera, Phys. Lett. B 399 (1997) 191.
[13] J.M. Lattimer and Y. Lim, Astrophys. J. 771 (2013) 51.

1Standard RMF consist of four meson fields σ, ω, ρ, and δ that couple to nucleons, with no
additional meson-meson interactions.
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