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Abstract. Two methods describing the nuclear collective motion, the Wigner
Function Moments (WFM) and the Random Phase Approximation (RPA), are
compared on the example of the nuclear scissors mode description.

1 Introduction

The aim of this paper is the systematic comparison of two methods to describe
the collective motion: Wigner Function Moments (WFM) and Random Phase
Approximation (RPA).

RPA is very well known, but it is necessary to say several words about WFM
method. The idea of the WFM method is based on the virial theorems of Chan-
drasekhar and Lebovitz. These theorems were derived by the authors in fifties
in a series of papers, the results of which were summarized in the book [1]. The
old astrophysical problems were considered: figures of equilibrium of rotating
self–gravitating masses (planets and stars) and their vibration eigenfrequencies.
In the classical mechanics the dynamics of such objects is described with the
help of the well–known equations of hydrodynamics, the Euler equation and
the continuity equation, which usually lead to very complicated mathematical
problems. Chandrasekhar and Lebovitz have shown that the solution of these
problems can be found in an essentially simpler and elegant way if one works
with moments of the Euler equation (virial theorems).

Following to this idea one writes the dynamical equations for various multi-
pole phase space moments of a nucleus (WFM), instead of writing the equations
of motion for microscopic amplitudes of particle hole excitations (RPA). Let us
consider, as an example, the competition of two methods in the description of
the nuclear scissors mode.

2 WFM

The basis of the method is the Time Dependent Hartree-Fock (TDHF) equation
for the one-body density matrix ρτ (r1, r2, t) = 〈r1, t|ρ̂τ |r2, t〉 :

i~
∂ρ̂τ

∂t
=
[
ĥτ , ρ̂τ

]
, (1)
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where ĥτ is the one-body self-consistent mean field Hamiltonian and τ is an
isotopic index. With the help of Fourier (Wigner) transformation

fτ (r,p, t) =

∫
d3s exp(−ip · s/~)ρτ (r +

s

2
, r− s

2
, t) (2)

the density matrix ρτ (r1, r2, t) is transformed into the Wigner function fτ (r,p, t)
and TDHF equation for a density matrix is transformed into TDHF equation for
a Wigner function. Integrating this equation over a phase space with the weights

{r ⊗ r}λµ, {p⊗ p}λµ, {r ⊗ p}λµ,

where {r⊗p}λµ =
∑
σ,ν

Cλµ1σ,1νrσpν is a tensor product, one derives dynamical

equations for the following second order moments, collective variables of WFM
method:

Rτλµ(t) = 2(2π~)−3

∫
dp

∫
dr {r ⊗ r}λµfτ (r,p, t),

P τλµ(t) = 2(2π~)−3

∫
dp

∫
dr {p⊗ p}λµfτ (r,p, t),

Lτλµ(t) = 2(2π~)−3

∫
dp

∫
dr {r ⊗ p}λµfτ (r,p, t).

(3)

Let us use the simple Hamiltonian:

H =

A∑
i=1

(
p̂2
i

2m
+

1

2
mω2r2

i

)
+ κ̄

2∑
µ=−2

(−1)µ
Z∑
i

N∑
j

q2µ(ri)q2−µ(rj)

+
1

2
κ

2∑
µ=−2

(−1)µ


Z∑
i 6=j

q2µ(ri)q2−µ(rj) +

N∑
i 6=j

q2µ(ri)q2−µ(rj)

 , (4)

where q2µ =
√

16π/5 r2Y2µ and N,Z are the number of neutrons and protons
respectively.

The integration yields the set of coupled nonlinear dynamical equations:

d

dt
Rτλµ −

2

m
Lτλµ = 0,

d

dt
Lτλµ −

1

m
P τλµ +mω2Rτλµ − 12

√
5
∑
j=0,2

√
2j + 1{11j

2λ1}{Z
τ
2 ⊗Rτj }λµ = 0,

d

dt
P τλµ + 2mω2Lτλµ − 24

√
5
∑

j=0,1,2

√
2j + 1{11j

2λ1}{Z
τ
2 ⊗ Lτj }λµ = 0.

Here {11j
2λ1} is the Wigner 6j-symbol, λ = 0, 1, 2, R1µ = P1µ ≡ 0 and

Zn
2µ = κRn

2µ + κ̄Rp
2µ , Zp

2µ = κRp
2µ + κ̄Rn

2µ .
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These equations can be solved analytically in a small amplitude approxima-
tion. To this end all variables are represented as the sum of the equilibrium value
plus infinitesimally small variation Xλµ(t) = Xeq

λµ + Xλµ(t), and one neglects
by squares of Xλµ(t). It is convenient to rewrite equations in terms of isoscalar
and isovector variables:

Xλµ(t) = Xn
λµ(t)+Xp

λµ(t), X̄λµ(t) = Xn
λµ(t)−Xp

λµ(t), X ≡ {R,L, P}.

Solving characteristic equation of the isovector set of equations one finds
analytic expressions for energies of IVGQR and a scissors mode:

E2
IVGQR = (2~ω̄)2

(
1 +

δ

3
+

√
(1 +

δ

3
)2 − 3

4
δ2

)
,

E2
scis = (2~ω̄)2

(
1 +

δ

3
−
√

(1 +
δ

3
)2 − 3

4
δ2

)
,

(5)

where

ω̄2 = ω2
0(1 +

4

3
δ)−2/3(1− 2

3
δ)−1/3.

The reduced transition probabilities are calculated with the help of the theory
of a linear response of a system to a weak external field

F̂ (t) = F̂ exp(−iΩt) + F̂ † exp(iΩt), (6)

where F̂ =
∑A
s=1 f̂s is a one-body operator. A convenient form of the response

theory is e.g. given by Lane [2]. The matrix elements of the operator F̂ obey the
relation

|〈ν|F̂ |0〉|2 = ~ lim
Ω→Ων

(Ω− Ων)〈ψ|F̂ |ψ〉 exp(−iΩt), (7)

where |0〉 and |ν〉 are the stationary wave functions of unperturbed ground and
excited states; ψ is the wave function of the perturbed ground state. To calculate
the magnetic transition probability, it is necessary to excite the system with the
following external field:

F̂ =

Z∑
s=1

f̂λµ′(s), f̂λµ′ = −i 2

λ+ 1
∇(rλYλµ′) · [r×∇]µN ,

where µN = e~/2mc. One finds for µ′ = 1:

B(M1)ν =
3

8π
mω̄2Q00δ

2 E2
ν − 2(1 + δ/3)~2ω̄2

Eν [E2
ν − (2~ω̄)2(1 + δ/3)]

µ2
N , (8)

where Q00 = A〈r2〉.
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3 RPA

RPA equations in the notation of [3] are∑
n,j

{[δijδmn(εm − εi) + v̄mjin]Xnj + v̄mnijYnj} = ~ΩXmi,∑
n,j

{v̄ijmnXnj + [δijδmn(εm − εi) + v̄inmj ]Ynj} = −~ΩYmi.
(9)

where Xmi and Ymi are the coefficients of the collective particle-hole operator

O†ν =
∑
mi

Xν
mia
†
mai −

∑
mi

Y νmia
†
iam , |ν〉 = O†ν |0〉.

According to the definition of the schematic model matrix elements of the
residual interaction corresponding to the Hamiltonian (4) are written as

v̄mjin = κττ ′Qτ∗imQτ
′

jn

with Qim ≡< i|q21|m > and κnn = κpp = κ, κnp = κ̄. This interaction
distinguishes between protons and neutrons, so we have to introduce the isospin
indices τ, τ ′ into the set of RPA equations (9):

(ετm − ετi )Xτ
mi +

∑
n,j,τ ′

κττ ′Qτ∗imQτ
′

jnX
τ ′

nj

+
∑
n,j,τ ′

κττ ′Qτ∗imQτ
′

njY
τ ′

nj = ~ΩXτ
mi,∑

n,j,τ ′

κττ ′Qτ∗miQτ
′

jnX
τ ′

nj + (ετm − ετi )Y τmi

+
∑
n,j,τ ′

κττ ′Qτ∗miQτ
′

njY
τ ′

nj = −~ΩY τmi.

(10)

The solution of these equations is

Xτ
mi =

Qτ∗im
E − ετmi

Kτ , Y τmi = − Qτ∗mi
E + ετmi

Kτ (11)

with E = ~Ω, ετmi = ετm − ετi and Kτ =
∑
τ ′ κττ ′Cτ

′
.

The constant Cτ is defined as Cτ =
∑
n,j(QτjnXτ

nj +QτnjY τnj). Using here
the expressions for Xτ

nj and Y τnj given above, one derives the useful relation

Cτ = 2SτKτ = 2Sτ
∑
τ ′

κττ ′Cτ
′
, (12)

where the following notation is introduced:

Sτ =
∑
mi

|Qτmi|2
ετmi

E2 − (ετmi)
2
. (13)

141



E.B. Balbutsev, I.V. Molodtsova

Let us write out the relation (12) in detail

Cn − 2Sn(κCn + κ̄Cp) = 0,

Cp − 2Sp(κ̄Cn + κCp) = 0.
(14)

The condition for an existence of a nontrivial solution of this set of equations
gives the secular equation

(1− 2Snκ)(1− 2Spκ)− 4SnSpκ̄2 = 0. (15)

The detailed expression for the isovector secular equation is

1

2κ1
=
∑
mi

|Qmi|2
εmi

E2 − ε2mi
. (16)

The operator Q = q21 has only two types of nonzero matrix elements Qmi in
the deformed oscillator basis. Matrix elements of the first type couple states
of the same major shell. All corresponding transition energies are degenerate:
εm−εi = ~(ωx−ωz) ≡ ε0. Matrix elements of the second type couple states of
the different major shells with ∆N = 2. All corresponding transition energies
are degenerate too: εm− εi = ~(ωx+ωz) ≡ ε2. Therefore, the secular equation
can be rewritten as

1

2κ1
=

ε0Q0

E2 − ε20
+

ε2Q2

E2 − ε22
. (17)

The sums Q0 =
∑

mi(∆N=0)

|Qmi|2 and Q2 =
∑

mi(∆N=2)

|Qmi|2 can be calcu-

lated analytically:

Q0 =
Q00

mω̄2
ε0, Q2 =

Q00

mω̄2
ε2. (18)

As a result one gets analytic expressions for energies, which coincide with
the ones derived by WFM method (5).

The transition probability for the one-body operator F̂ =

A∑
s=1

f̂s is calculated

by means of the formulae

〈0|F̂ τ |ν〉 =
∑
mi

(fτimX
τν
mi + fτmiY

τν
mi ), 〈ν|F̂ τ |0〉 =

∑
mi

(fτmiX
τν
mi + fτimY

τν
mi ).

It is easy to derive analytic expressions, which coincide with that ones de-
rived by WFM method (8).

So, one can conclude that WFM method and RPA are identical, is not it?!
Not at all. They are similar, but not identical! Their results coincide in the case
of exactly soluble models, as it happened in the considered example, and not
more!
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4 Similarities and differences

4.1 Similarities

1) The basis of both methods is the same: Time Dependent Hartree–Fock (TDHF).
2) The small amplitude approximation.
3) 1p-1h excitations: evident in RPA and implicit in WFM, because the idempo-
tent property ρ2 = ρ of the density matrix must be fulfilled.

4.2 Differences

1) Strictly speaking the small amplitude approximation is not compulsory in the
WFM method – it allows one to study the large amplitude motion too. For
example multiphonon excitations of giant resonances were described in [4]. So,
from this point of view the WFM method is more general than the RPA.
2) The principal approximations of two methods are absolutely different.

a) In RPA it is the quasi-boson approximation,

〈RPA|[a†iam, a
†
naj ]|RPA〉 = δijδmn − δmn〈RPA|aja†i |RPA〉

− δij〈RPA|a†nam|RPA〉 ' 〈HF |[a
†
iam, a

†
naj ]|HF 〉 = δijδmn,

the quality of which can be checked only from realistic calculations.
b) In WFM one neglects by the influence of higher multipolarity moments

on the dynamics of lower multipolarity moments. This approximation seems
quite natural on the intuitive level and is confirmed by calculations [5].

For example, in the case with spin degrees of freedom one gets the follow-
ing set of dynamic equations for second order moments (which have now spin
indexes ↑↓, ↓↑, ↑↑, ↓↓, X± = X↑↑ ± X↓↓). Some of these equations contain
integral terms, who generate fourth order moments. Namely they are neglected
here.

L̇+
λµ =

1

m
P+
λµ −mω2R+

λµ + 2
√

5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗R

+
j }λµ

− i~η
2

[µL−λµ + λ−µL
↑↓
λµ+1 + λ+

µL
↓↑
λµ−1],

L̇−λµ =
1

m
P−λµ −mω2R−λµ + 2

√
5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗R

−
j }λµ

+ iη
√

2

∫
d(p, r){r ⊗ p}λµ[l1f

↑↓ + l−1f
↓↑]

− i~η
2
µL+

λµ −
~2

2
ηδλ,1[δµ,−1F

↑↓ + δµ,1F
↓↑],
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L̇↑↓λµ+1 =
1

m
P ↑↓λµ+1 −mω2R↑↓λµ+1 + 2

√
5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗R

↑↓
j }λµ+1

− i η√
2

∫
d(p, r){r ⊗ p}λµ+1[l−1f

− −
√

2l0f
↑↓]

− i~η
4
λ−µL

+
λµ +

~2

2
ηδλ,1[δµ,0F

− +
1√
2
δµ,−1F

↑↓],

L̇↓↑λµ−1 =
1

m
P ↓↑λµ−1 −mω2R↓↑λµ−1 + 2

√
5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗R

↓↑
j }λµ−1

− i η√
2

∫
d(p, r){r ⊗ p}λµ−1[l1f

− +
√

2l0f
↓↑]

− i~η
4
λ+
µL

+
λµ +

~2

4
ηδλ,1[δµ,0F

− −
√

2δµ,1F
↓↑],

Ḟ− = 2η[L↓↑1−1 + L↑↓11],

Ḟ ↑↓ = − η[L−1−1 −
√

2L↑↓10],

Ḟ ↓↑ = − η[L−11 +
√

2L↓↑10],

Ṙ+
λµ =

2

m
L+
λµ

− i~η
2

[µR−λµ + λ−µR
↑↓
λµ+1 + λ+

µR
↓↑
λµ−1],

Ṙ−λµ =
2

m
L−λµ − i~

η

2
µR+

λµ + iη
√

2

∫
d(p, r){r ⊗ r}λµ[l1f

↑↓ + l−1f
↓↑],

Ṙ↑↓λµ+1 =
2

m
L↑↓λµ+1 − i

η√
2

∫
d(p, r){r ⊗ r}λµ+1[l−1f

− −
√

2l0f
↑↓]

− i~η
4
λ−µR

+
λµ,

Ṙ↓↑λµ−1 =
2

m
L↓↑λµ−1 − i

η√
2

∫
d(p, r){r ⊗ r}λµ−1[l1f

− +
√

2l0f
↓↑]

− i~η
4
λ+
µR

+
λµ,

Ṗ+
λµ = − 2mω2L+

λµ + 4
√

5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗ L

+
j }λµ

− i~η
2

[µP−λµ + λ−µP
↑↓
λµ+1 + λ+

µP
↓↑
λµ−1],

Ṗ−λµ = − 2mω2L−λµ + 4
√

5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗ L

−
j }λµ

− i~η
2
µP+

λµ + iη
√

2

∫
d(p, r){p⊗ p}λµ[l1f

↑↓ + l−1f
↓↑],
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Ṗ ↑↓λµ+1 = − 2mω2L↑↓λµ+1 + 4
√

5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗ L

↑↓
j }λµ+1

− i~η
4
λ−µP

+
λµ − i

η√
2

∫
d(p, r){p⊗ p}λµ+1[l−1f

− −
√

2l0f
↑↓],

Ṗ ↓↑λµ−1 = − 2mω2L↓↑λµ−1 + 4
√

5

2∑
j=0

√
2j + 1{11j

2λ1}{Z
+
2 ⊗ L

↓↑
j }λµ−1

− i~η
4
λ+
µP

+
λµ − i

η√
2

∫
d(p, r){p⊗ p}λµ−1[l1f

− +
√

2l0f
↓↑],

where λ±µ =
√

(λ± µ)(λ∓ µ+ 1).
3. Being formulated in terms of collective variables, WFM method does not

meet the problem of basis, contrary to RPA, which is formulated in terms of
creation and annihilation operators.

4. Multiplying the TDHF equation by some functions ({r ⊗ r}λµ,
{p ⊗ p}λµ, {r ⊗ p}λµ, in our case) one does not destroy its symmetries. As a
consequence, all conservation laws are fulfilled (for example, energy and angular
momentum) and spurious states don’t appear.

5. WFM method allows one more direct physical interpretation of the studied
phenomenon because every collective variable has the clear physical sense:

Q2µ — quadrupole moment,
P2µ — quadrupole moment in a momentum space (Fermi surface deforma-

tion),
L1µ — angular momentum (rotation).
For example, from the RPA dynamic equations it follows that low lying 1+

excitations are just transitions inside of one shell, and nothing more.
From WFM dynamic equations it follows that low lying 1+ excitations are

generated by all three above mentioned variables – this means that the relative
rotation of protons and neutrons (L̄11 variable) is accompanied by the Fermi
surface deformation (P̄21 variable) and by the isovector quadrupole deformation
i.e. IVGQR (Q̄21 variable).

WFM method allows one to distinguish three types of scissors modes in
the case with spin degrees of freedom, whereas it is impossible in the frame of
RPA. Actually, the existence of three scissors states is naturally explained by
combinatorics – there are only three ways to divide the four different kinds of
objects (spin up and spin down, protons and neutrons in our case) into two pairs:

i) spin-up and spin-down protons oscillate versus the corresponding neutrons
(the conventional scissors mode), the responsible variable is

L̄+
11 = (L↑↑11 + L↓↓11)n − (L↑↑11 + L↓↓11)p,

ii) protons and neutrons, both spin-up, oscillate versus same with spin-down,
the responsible variable is L−11 = (Ln

11 + Lp
11)↑↑ − (Ln

11 + Lp
11)↓↓,
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np
p n
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Figure 1. Schematic representation of three scissors modes: (a) spin-scalar isovector
(conventional, orbital scissors), (b) spin-vector isoscalar (spin scissors), (c) spin-vector
isovector (spin scissors). Arrows show the direction of spin projections; p – protons, n –
neutrons. The small angle spread between the various distributions is only for presenta-
tion purposes.

5 Conclusion

WFM and RPA are complementary methods: first one describes averaged, sum-
marized characteristics of the phenomenon, whereas second one allows one to
study its fine structure.
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isovector (spin scissors). Arrows show the direction of spin projections; p – protons, n –
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iii) protons spin-up with neutrons spin-down oscillate versus protons spin-
down with neutrons spin-up, the responsible variable is

L̄−11 = (L↑↑11

n
+ L↓↓11

p
)− (L↑↑11

p
+ L↓↓11

n
).

5 Conclusion

WFM and RPA are complementary methods: first one describes averaged, sum-
marized characteristics of the phenomenon, whereas second one allows one to
study its fine structure.
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