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Abstract. In this work, we present a correlation that we have revealed between
the well-known quantum concepts: the Minimal Length (ML) and the Deforma-
tion Dependent Mass (DDM) in the study of transitional nuclei near the critical
point symmetries X(3) and Z(4).

1 Introduction

The theoretical study of the Quantum phase transitions (QPT) in nuclear struc-
ture have attracted a lot of attention [1] to understand low-energy quantum ro-
vibrational modes of nuclei in the shape phase transitional region [2]. There-
fore, different approaches have been developed in this context particularly in
the framework of the Bohr-Mottelson model [3] and Interacting Boson Model
(IBM) [4]. Moreover, the interest devoted to such a thematic has increased even
more with the occurrence of Critical Point Symmetries (CPSs). Among these
symmetries, one can cite for example E(5) [5] and X(5) [6] corresponding to
the shape phase transitions U(5)↔O(6) and U(5)↔ SU(3) respectively. Later,
a γ-rigid (with γ = 0) version of X(5), called X(3), has been introduced [7].
In the same way, other CPS have been developed like for example Z(5) and
its γ-rigid version Z(4) (with γ = π/6) corresponding to shape phase transi-
tions from prolate to triaxial symmetry [8]. In this context, considerable at-
tempts have been done for several potentials to achieve analytical solutions of
Bohr Hamiltonian, either in the usual case where the mass parameter is assumed
to be a constant [9–11], within Deformation Dependent Mass (DDM) formal-
ism [12–15], or by introducing the the Minimal Length (ML) concept in nuclear
structure [16–18]. The DDM concept [19], which is widely used in quantum
physics, is equivalent to a deformation of the canonical commutation relations:

[xi, xj ] = 0, [xi, pj ] = i~δi,j , [pi, pj ] = 0, (1)
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where i = 1, 2, 3. By replacing the momentum components pi = −i~∇i =
−i~∂/∂xi by some deformed hermitian operators:

πi =
√
f(x) pi

√
f(x), (2)

where the positive real deforming function f(x) depends on the coordinates x =
(x1, x2, x3), both last commutators in Eq.(1) transform into:

[xi, πj ] = i~f(x)δi,j , [πi, πj ] = i~[fj(x)πi − fi(x)πj ]. (3)

On the other hand, several studies in string theory [20] and quantum gravity [21]
in the view of Heisenberg algebra propose a small correction to the Heisenberg
uncertainty relation of the form

∆X∆P ≥ ~
2

(1 + α(∆P )2), (4)

Therefore, this correction results in the modification of the canonical commuta-
tion relation between the position operator and momentum operator.

In the present work the attention is focused on the study of correlation be-
tween the two quantum concepts: the Minimal Length (ML) and the Deforma-
tion Dependent Mass (DDM), through solutions of Bohr-hamiltonian for transi-
tional nuclei in the limits of CPS X(3) and Z(4) with ISW and Davidson poten-
tials.

2 First Concept: Deformation Dependent Mass

The DDM approach consists in a generalized Bohr Hamiltonian by allowing
the nuclear mass to depend on the deformation coordinate β, such as B(β) =
B0/f

2(β), whereB0 is a constant and f(β) is the deformation function depend-
ing only on the radial coordinate β. This formalism has been firstly achieved
by applying Davidson [12] and Kratzer [14] potentials to huge number of γ-
unstable and axially symmetric prolate deformed nuclei with a good prediction
of the corresponding experimental data in comparison with the constant mass
models.

The Bohr Hamiltonian, in DDM formalism, is equivalent to a modified Bohr
hamiltonian with different metric and different effective potential. The resulting
equation reads as,[
− 1

2

√
f

β4

∂

∂β
β4f

∂

∂β

√
f − f2

2β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

+
f2

8β2

∑
k=1,2,3

Q2
k

sin2(γ − 2
3πk)

+ veff

]
Ψ = εΨ, (5)

173



S. Ait Elkorchi, M. Chabab, A. El Batoul, A. Lahbas, M. Oulne

with,

veff = v(β, γ) +
1

4
(1− δ − λ)f 52 f +

1

2

(
1

2
− δ
)(

1

2
− λ

)
(5f)2, (6)

where δ and λ are free parameters originated from the construction procedure of
the kinetic energy term within the DDM formalism. The reduced energies and

potentials are defined as ε =
B0

~2
E, v(β, γ) =

B0

~2
V (β, γ), respectively. Note

that the deformation function f(β) depends on the potential shape, for example:{
fD(β) = 1 + aβ2 in the case of Davidson potential vD(β) = β2 +

β2
0

β2

fK(β) = 1 + aβ in the case of Kratzer potential vK(β) = −1
β + 1

β2

It is clear that in the case of the Bohr Hamiltonian with DDM formalism as
seen from Eq. (5), the moment of inertia is defined by (β2/f2(β)) sin2(γ −
2πk/3). The effect of the function β2/f2(β) on the moment of inertia is shown
in Figure (1) for different values of the deformation parameter a. It is apparent
that the increase of the moment of inertia is slowed down by the function of
deformation f(β).

β

β
2

(1
+
a
β
2
)2

Figure 1. The function β2/Bβ(1+ aβ2)2, to which moments of inertia are proportional,
plotted as a function of the nuclear deformation β, for different values of the parameter a.

3 Second Concept: Bohr Hamiltonian in the Presence of a Minimal
Length

This formalism has introduced the minimal length in nuclear structure [16].
Such an approach, which is inspired from Heisenberg algebra, modifies the mo-
mentum operator according to some requirements of the Generalized Uncer-
tainty Principle (GUP). In the framework of this formalism, the generalization
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of the deformed canonical commutation relation is given by [22][
X̂i, P̂j

]
= i~

(
δij + αP̂ 2δij + α′P̂iP̂j

)
, (7)

where α′ is an additional parameter which is of the order of α. In this case, the
components of the momentum operator commute to one another[

P̂i, P̂j

]
= 0. (8)

However, the commutator between two position operators is in general different
from zero[

X̂i, X̂j

]
= i~

(2α− α′) + (2α+ α′)αP̂ 2

1 + αP̂ 2

(
P̂iX̂j − P̂jX̂i

)
. (9)

The operators X̂i and P̂i up to the first order in α are given by:

X̂i = x̂i, P̂i =
(
1 + αp̂2

)
p̂i. (10)

The collective motion of the γ-rigid Z(4), in the presence of ML, is achieved by
considering the Hamiltonian [16]

Ĥ = − ~2

2Bm
∆ +

α~4

Bm
∆2 + V (β), (11)

with
∆ =

[ 1

β3

∂

∂β
β3 ∂

∂β
− 1

β2

(
Q̂2 − 3

4
Q̂2

1

)]
. (12)

In order to determine the eigenfunctions and eigenvalues of the operator Ĥ , we
put

Ψ(β,Ω) =
[
1 + 2α~2∆

]
Fnβ (β)Y Lµ,ω(Ω), Ω = (θ1, θ2, θ3). (13)

Thus, we obtain the equation in the variable β:[ 1

β3

∂

∂β
β3 ∂

∂β
− WL,ω

4β2

+
2Bm
~2

( E − V (β)

(1 + 4Bmα(E − V (β)))

)]
Fnβ (β) = 0, (14)

where nβ is radial quantum number and WL,ω =
(

4Q̂2 − 3Q̂1
2
)
YL,ω(Ω) =

4L(L+ 1)− 3ω2 is found by using the following symmetrized wave function,

Y Lµ,ω(Ω) =

√
2L+ 1

16π2(1 + δω,0)

[
D(L)
µ,ω(θi) + (−1)LD(L)

µ,−ω(θi)
]
, (15)

with D(θi) represent the Wigner functions of the Euler angles.
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4 Correlation between DDM and ML

After presenting the theoretical background of two quantum concepts, namely:
the Minimal Length (ML) and the Deformation Dependent Mass (DDM), we
have now to reveal the correlation between them, through solutions of Bohr-
hamiltonian for transitional nuclei in the limits of CPS X(3) and Z(4).

4.1 The case of X(3)-model

Here, we consider the above mentioned equation in the previous section, with
an Infinite Square-Well ISW potential defined by

V (β) =

{
0, if β ≤ βω
∞, if β > βω

, (16)

where βw indicates the width of the well. The peculiarity of this potential re-
sides in the fact that it admits an infinite number of minimums and moreover,
it obviously cannot have unbound states, all possible energies will therefore be
quantified. The deforming function coming from DDM formalism, is chosen in
the case of an ISW with a null depth in the following form

f(β) = β−a, a ∈ [0, 1[ , (17)

where a is deformation mass parameter. An important consequence of this chose
is the possibility to derive the energy spectrum, as a function of zeros of the
Bessel functions, employing the same method in Ref. [7]. Thus, the energies
of X(3) model, characterized by the principal quantum number s together with
total angular momentum L are given in this frame by:

Es,L =
~2

2Bm
k̄2s,η, k̄s,η =

χs,η

βa+1
ω

, (18)

where χs,η is the s-th zero of the Bessel function and βω is the potential’s width.
η is a parameter given by

η =

√
a(a+ 1) + L(L+1)

3 + 1
4

2(a+ 1)
. (19)

In the ML concept, the eigenenergies formula reads [16]

Es,L =
~2

2Bm
×

k̄2s,η
1− 2~2αk̄2s,η

, k̄s,η =
χs,η
βω

(20)

where the parameter η, is given by

η =

(
L(L+ 1)

3
+

1

4

) 1
2

. (21)
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By using the energy spectrum of equations (18),(20), we have calculated for
each quantum concept the energy ratios RLg/2g and RLβ/2g of different levels
Lg and Lβ of the ground state (g.s) and β bands, respectively, normalized to the
first excited level of the g.s band, for 36 even-even nuclei having the ratioR4g/2g

not far from the value 2.44, which is a reference point for the X(3) model, such as
the following isotope chains: 104Ru, 106Cd, 112Pd, 106,116−120Cd, 116−134Xe,
132,138Ce, 132−136,142Ba, 140−144Gd, 152Gd, 154Dy, 172Hf, 172,176Os, 190Os,
186−190Pt, 194−196Pt, 140,148Nd. Moreover, the parameters a (DDM) and α
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

α

ρ=0.962:

Cross-correlation coefficient of X(3)-model

Figure 2. The Correlation between the parameters a and α in X(3).

(ML) for each nucleus are obtained by fitting their available experimental data
and are depicted in Figure (2). In fact, this figure shows a strong correlation
between ML and DDM formalisms where the cross-correlation coefficient is
equal to 0.96. The nuclei situated on the bisectrix have been proved to be the
best candidates for X(3) symmetry [7, 23] namely: 120,126Xe, 148Nd, 172Os and
186Pt, including two new ones: 124Xe and 190Pt.

4.2 The case of Z(4)-model

As to the CPS Z(4) within DDM concept, by using the deformation function Eq.
(17) and through asymptotic iteration method, the eigenvalues are determined
by the following formula:

Es,L =
~2

2Bm
k̄2s,η, k̄s,η =

χs,η

βa+1
ω

, (22)

with,

η =

√
L(L+ 4) + 3nω (2L− nω) + 2a(3a− 4) + 4

2(a+ 1)
. (23)

where nw is the wobbling quantum number, while in the ML concept, the equa-
tions above are defined respectively by [16]:

Es,L =
~2

2Bm
×

k̄2s,η
1− 2~2αk̄2s,η

, k̄s,η =
χs,η
βω

(24)
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and,

η =

√
L(L+ 4) + 3nω (2L− nω) + 4

2
. (25)

The calculations of the energy ratios RLg/2g , RLβ/2g and RLγ/2g , by the above
equations (22),(24) have been carried out for several isotopes for which the ratio
R4g/2g is nearby to 2.23, namely: 98−104Ru, 102−116Pd, 106−120Cd, 118−134Xe,
130−136Ba, 134−138Ce, 142Ba, 142−144Gd, 152Gd, 186−200Pt. The obtained pa-
rameters a (DDM) and α (ML), by fitting Eq. (22) and Eq. (24) on all available
experimental levels, are plotted in Figure 3. One can observe a strong correla-
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Figure 3. The correlation between the parameters a and α in Z(4).

tion between both concepts (DDM and ML). The cross correlation coefficient is
equal to 0.97. The best candidate nuclei for this CPS are set on the bisectrix,
which are: 128−132Xe and 192−196Pt. These isotopes have been already proved
to be the best candidates for Z(4) model [24, 25] including the new one 114Pd.

4.3 The case of X(3)-model with Davidson potential

In order to see further whether the above found correlation is or not adversely
impacted by the form or type of the used potential, we apply the above concepts
to Davidson potential,

U(β) = cβ2 +
b

β2
, β0 =

(b
c

)1/4
(26)

where b and c are two free scaling parameters, and β0 represents the position of
the minimum of the potential. In the CPS X(3) within DDM formalism, through
AIM we obtained the energy eigenvalues

Enβ ,L =
~2

2Bm

(
k0 +

1

2
(3 + 2σ2 + 2σ−2 + σ−2σ2)

+ 2anβ(2 + σ−2 + σ2) + 4an2β

)
(27)
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where

σ2 =

√
1 + 8

k2
a2
, σ−2 =

√
1 + 8k−2,

k0 =a
(2L(L+ 1)

3
+ 3(1− δ − δ) + 1

)
, k−2 = b+

L(L+ 1)

6
, (28)

k2 =c+ a2
[3

2
(1− δ − λ) + 2

(1

2
− δ
)(1

2
− λ
)

+
L(L+ 1)

6

]
.

For the γ-rigid nuclei within minimal length X(3)-ML by considering a scaled
Davidson potential (26), the energy spectrum has been obtained by quantum
perturbation method in Ref [17] of the form

Enβ ,L = E
(0)
nβ ,L

+ 4Bmα
[(
E

(0)
nβ ,L

)2
+ 2cb

− 2E
(0)
nβ ,L

(
cβ̄2 + b ¯β−2

)
+
(
c2β̄4 + b2 ¯β−4

)]
(29)

The fit of the formulas (27)-(29) for the energy ratios, in the model X(3) on
the available experimental data [26] for all above used isotope chains has lead to
the parameters values of a (DDM) and α (ML), which are plotted in Figure (4).
It appears clearly that a very strong correlation exists between the two quantum
concepts. In fact, the cross-correlation coefficient is 0.94 in the X(3) case.
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Figure 4. The correlation between the parameters a and α in D-X(3).

4.4 The case of Z(4)-model with Davidson potential

For Davidson potential, given in Eq. (26). The energy eigenvalues of Z(4)-model
within DDM concept through AIM are given by

E = 2a
(

2nβ+K1+1
)
K2+2a

(
2n2β+K1(2nβ+1)+2nβ+3+Λ+4C1

)
, (30)
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where

Λ =L(L+ 1)− 3

4
α2

C1 =
1

2

(
1− δ − λ

)
, C2 =

(1

2
− δ
)(1

2
− λ
)
, (31)

K1 =
√

1 + Λ + b, K2 =

√
λ+ 12C1 + 4C2 + 4 +

c

a2
.

Concerning the energy eigenvalues of Z(4)-model within ML concept for David-
son potential Eq. (26), they are obtained in the form

Enβ ,L = E
(0)
nβ ,L

+ 4Bmα
[(
E

(0)
nβ ,L

)2
+ 2cb

− 2E
(0)
nβ ,L

(
cβ̄2 + b ¯β−2

)
+
(
c2β̄4 + b2 ¯β−4

)]
(32)

The fit of the energy ratios (30)-(32) normalized to the first excited level
RLg/2g , RLβ/2g and RLγ/2g , in the model Z(4) on the available experimental
data [26] for all above used isotope chains has lead to the parameters values of
a (DDM) and α (ML), which are depicted in Figure (5). It is obvious that a
very strong correlation exists between the two quantum concepts. In fact, the
cross-correlation coefficient is 0.99 in the X(4) case.

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20



α

ρ=0.996 :

Cross-correlation coefficient of D-Z(4)-model

Figure 5. The correlation between the parameters a and α in D-Z(4).

5 Conclusion

We have studied the correlation between both quantum concepts, namely: the
Minimal Length (ML) and the Deformation Dependent Mass (DDM) in transi-
tional nuclei near the critical points symmetries (CPS) X(3) and Z(4) with ISW
and Davidson potentials. The ML and DDM are well and truly strongly cor-
related. The uncovered correlation has been used as a new signature for some
nuclear CPS allowing us to predict new candidate nuclei to these symmetries.
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The present revelation will pave the way for further investigations of such cor-
relation in other shape phase transitions in nuclei at other CPS.
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