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Abstract. As well known, the spectrum of a non-relativistic two-body system
interacting by the Coulomb potential is the Balmer series En = α2m

4n2 produced
by the Schrödinger equation. In 1954, Wick and Cutkosky have found, in the
Bethe-Salpeter equation framework, that for α > π

4
the relativistic effects result

in new levels (in addition to the Balmer series). However, the physical nature
of these new states remained unclear and therefore their existence was being
questioned. We have recently shown that these extra states are dominated by the
exchange (massless) particles, moving with speed of light. That’s why they did
not appear in the non-relativistic (Schrödinger) framework.

1 Introduction

Hydrogen atom played outstanding role in establishing the quantum mechanics.
Description of its spectrum by the formula

En = −α
2m

4n2
, (1)

firstly found empirically by Bohr and then derived by Pauli (by the matrix method)
and, soon after, independently, by Schrödinger (from his equation), was one of
the first great successes of quantum mechanics. These derivations have been
done in non-relativistic approach. However, it turned out that the relativistic
effects, taken into account in 1954 by Wick [1] and Cutkosky [2] in the frame-
work of the Bethe-Salpeter (BS) equation [3], not only shift the position of En,
but also result in appearance of new levels, which are absent in the Schrödinger
equation with the Coulomb potential and are not described by the Balmer se-
ries. The physical nature of these new states remained unclear during almost 70
years. Some researchers believed that these states are indeed predicted in the BS
framework and therefore must exist in nature, others assumed that they indicated
a defect of the BS equation (see for review §8 in [4]). In any case, prediction in
a Coulomb system, among the Balmer series, of the extra states is an event of
fundamental importance.

The nature of these extra states was clarified in our recent papers [5, 6]. We
calculated for these states, called in literature ”abnormal”, the percentage of the
constituent (valence, massive) particles (their contribution to the full normaliza-
tion of the state vector, equaled to 1). In sharp contrast to the normal states, this
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contribution turned out to be less than 10% or, depending on the state, even less
than 1%. This means that these states are dominated, at least, for 90-99% by
the exchange (massless) particles. These unusual systems can be distinguished
from the ”normal” ones, not only by unusual sequence of their levels, but also
by behavior of their elastic and transition electromagnetic form factors. These
our results will be presented below.

Plan of this article is the following. In Sec. 2, we present the results found
by Wick and Cutkosky. Namely, we will show that the BS equation reproduces
the Balmer series and, in addition, it has extra abnormal solutions, disappearing
in the non-relativistic limit. Contribution of the two-body sector to full normal-
ization of the state vector is presented in Sec. 3. For the normal and abnormal
solutions, these contributions are drastically different: of the order of 1 for nor-
mal solution and vanishingly small for the abnormal one. The non-relativistic
limit is discussed in Sec. 4. In Sections 5 and 6 the elastic and transition elec-
tromagnetic form factors of normal and abnormal systems are calculated. Sec.
7 contains the concluding remarks.

2 Bethe-Salpeter Equation and Its Solutions

In quantum field theory any system is described by the state vector which we
denote as |p〉, where p is the total four-momentum of the system and M2 = p2

is its mass squared. In non-relativistic domain the state vector is reduced to the
wave function ψ(~r). The latter, for any bound state, can be represented in terms
of the Fourier integral:

ψ(~r) =

∫
φ(~k) exp(i~k~r)

d3r

(2π)3
,

i.e., as superposition of the plane waves exp(i~k~r) – the eigenstates of free Hamil-
tonian. The relativistic state vector |p〉 can be represented similarly in any sub-
space with fixed number of particles n. These subspaces are called the Fock
sectors, whereas the corresponding wave functions ψn(~k1,~k2, . . . ,~kn) are the
Fock components. On the top of that, since in the relativistic theory the num-
ber of particles is not conserved, |p〉 is a superposition of the Fock sectors, i.e.,
of the states with different number of particles. The eigenstate equation is an
infinite system of equations for the Fock components. In order to solve this
system approximately, one usually truncates the Fock decomposition, keeping a
few components which are expected as dominating. Solving system of equations
requires, as always, the renormalization, which now is the sector dependent one
(the counterterms depend on the Fock sectors). Having found a finite set of the
Fock components, i.e., approximate truncated state vector |p〉, one can study the
physical properties of a system, for example, calculate its electromagnetic form
factors. For a review of this approach, see e.g. [7].

Another approach to the theory of relativistic bound systems [3] deals not
with the state vector |p〉 itself and its Fock decomposition, but with the matrix
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element taken from the T-product of the Heisenberg operators ϕ̂(x) between the
vacuum state 〈0| and the state |p〉, namely:

Φ(x1, x2, p) = 〈0
∣∣∣T
(
ϕ̂(x1)ϕ̂(x2)

)∣∣∣ p〉 , (2)

x1,2 are the four-vectors. The matrix element Φ(x1, x2, p) is the BS amplitude
in the 4D coordinate space. Sometimes, the amplitude defined by Eq. (2) is
called “the two-body BS amplitude”. To avoid misunderstandings, we would
like to emphasize that this is, to some degree, slang reflecting the fact that this
BS amplitude depends on two variables x1, x2. The state vector |p〉 in the def-
inition (2) contains all of the Fock components, including the many-body ones.
Therefore, the BS amplitude (2) implicitly incorporates information not only
about the two-body Fock sector, but also about the higher ones. After extracting
the factor exp [−ip(x1 + x2)/2] the BS amplitude depends on the relative coor-
dinate x = x1 − x2 that in the momentum space corresponds to dependence on
the relative four-momentum k: Φ = Φ(k, p). The latter amplitude satisfies the
BS equation:

Φ(k, p) =
i2
∫
iK(k, k′, p)Φ(k′, p)d4k/(2π)4[

(p2 + k)2 −m2 + iε
] [

(p2 − k)2 −m2 + iε
] . (3)

For one-boson exchange, in the spinless case, the kernel K reads

iK(k, k′, p) =
i(−ig)2

(k − k′)2 − µ2 + iε
. (4)

It does not depend on p. For massless exchange, one should put in (4) µ = 0.
In non-relativistic limit, the kernel (4) is reduced to

K(~k, ~k′) =
g2

(~k − ~k′)2 + µ2
.

Its Fourier transform results in the Yukawa potential V (r) = −αr exp(−µr)
with α = g2/(16πm2). For µ = 0 it turns into the Coulomb potential
V (r) = −αr entering the Schrödinger equation

∆ψ(~r) + 2m[En − V (r)]ψ(~r) = 0. (5)

The BS equation (3) with the kernel (4) provides a relativistic generalization of
the Schrödinger equation (5) with the Coulomb potential.

There exists infinite number of the solutions Φn(k, p) of the equation (3)
with the kernel (4) with µ = 0 which differ by the integer parameter n =
1, 2, . . .. For the S-wave, each solution can be represented in the following inte-
gral form [1, 2]:

Φn(k, p) =

n−1∑

ν=0

∫ 1

−1
dz

−im2(n−ν)+1gνn(z)
[
m2 − 1

4M
2 − k2 − p·k z − ıε

]2+n−ν , (6)
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For given n, the functions gνn(z), ν = 0, . . . , n−1 satisfy a system of equations.
However, the equation determining the function g0n(z) is decoupled from other
equations. It has the form:

g0 ′′n (z)+
2(n− 1)z

(1− z2)
g0 ′n (z)− n(n− 1)

(1− z2)
g0n(z)+

α

π(1− z2)Q(z)
g0n(z) = 0, (7)

with the boundary conditions g0n(±1) = 0. Here Q(z) = 1 − M2
n

4m2 (1 − z2).
It determines the spectrum, i.e., the values M2

n. The function g0n(z), found
from this single equation, enters in the system of equations for other functions
gνn(z), ν = 1, . . . , n− 1 and, in its turn, determines these functions.

The number n in (6) is the counterpart of the principal quantum number
appearing in the Schrödinger equation (5). Due to the relativistic perturbative
correction of the next order in α, the Balmer series obtains the form [8] (compare
with (1)):

En = −α
2
(
1 + 4

πα logα
)
m

4n2
. (8)

However, the relativistic effects are not exhausted by the replacement α2 →
α2
(
1 + 4

πα logα
)

in (8). Their most important manifestation is in the fact that
for α > π

4 and for any fixed n = 1, 2, . . . the equation (7) has solutions for an
infinite set of masses Mnκ and the corresponding eigenfunctions gνnκ(z) enu-
merated by the new quantum number κ = 0, 1, 2, . . . In other words, for any n,
there exists an infinite spectrum of excited states. This is completely analogous
to appearance of the infinite spectrum of energies En in the Schrödinger equa-
tion (5). These extra excited states are actually highly excited (with energies
very close to zero), especially, when α is close to its minimal critical value π

4 .
Namely, the following approximate analytic expression for the abnormal spec-
trum near the continuum threshold (Eκ = Mnκ − 2m→ 0) takes place [1, 2]:

Eκ ' −m exp


− (κ− 1)π√

α
π − 1

4


 , (9)

where α > π/4 and κ = 2, 3, . . . At |Eκ|/m � 1 this spectrum vs. κ does not
depend on n. For α→ π

4 all the energies Eκ → 0.
For κ = 0 and small α the energies En = Mn − 2m coincide with the

non-relativistic ones. If α → 0 (En → 0), the ground state function g010(z)
obtains the following analytical form [1]: g010(z) = 1 − |z|. Substituting it in
the integral (6) for the BS amplitude and then extracting from this amplitude
the wave function, we reproduce the well known ground state hydrogen wave
function [6].

The solution g0nκ(z) vs. z has κ nodes within the interval −1 < z < 1 and
a definite parity [2]: g0nκ(−z) = (−1)κg0nκ(z). The odd solutions do not con-
tribute to the S-matrix [9, 10]. Therefore, we will be interested in the solutions
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Table 1. Binding energy |Enκ| (in the unites of m) and two-body norm (N2) of the low-
lying normal (n = 1, 2; κ = 0) and abnormal (n = 1, 2; κ = 2, 4) states, for the
coupling constant α = 5, for massless exchange µ = 0.

No. n κ |Enκ| N2

1 1 0 0.999259 0.65
2 2 0 0.208410 0.61
3 1 2 3.51169 · 10−3 0.094
4 2 2 1.12118 · 10−3 0.077
5 1 4 1.54091 · 10−5 6.19 · 10−3

6 2 4 4.95065 · 10−6 2.06 · 10−5

with even κ only. The binding energies, calculated numerically, for the solutions
with n = 1, 2 and κ = 0, 2, 4 are given in the Table 1.

The solution g010(z) (i.e., for n = 1, κ = 0, ν = 0), corresponding to No. 1
from the Table 1, is shown in the left panel of Figure 1. The solution g012(z) (i.e.,
for n = 1, κ = 2, ν = 0), corresponding to No. 3 from the Table 1, is shown
in the right panel of Figure 1. Each solution has κ nodes: 0 for g010(z) and 2 for
g012(z).
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Figure 1. Left panel: g010(z) for the state No. 1 (n = 1, κ = 0, normal) of the Table 1.
Right panel: g012(z) for the state No. 3 (n = 1, κ = 2, abnormal) of the Table 1 (adapted
from [5]).

3 Weight of two-body sector

The state vector |p〉 for the ground state is normalized to 1: 〈p|p〉 = 〈2|2〉 +
〈3|3〉+ . . . = 1. The two-body Fock component and its contributionN2 = 〈2|2〉
to the full norm equaled to 1 can be expressed via the BS amplitude Φ(k, p) (see
e.g., Sec. 3.3 from [11]). In its turn, BS amplitude Φ(k, p) is expressed by (6)
through the functions gνn(z). In the end, we obtain expression for N2 in terms
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of the know functions gνn(z). For example, for the state with n = 1, when only
one function g01(z), shown for κ = 0 and κ = 2 in Figure 1, contributes in (6),
the expression for N2 reads [5]:

Nn=1
2 =

1

384π2Ntot

∫ 1

−1

(1− z2)[g01(z)]2dz

[Q(z)]3
, (10)

Q(z) is the same as in (7). The value Ntot for any given state is found from the
condition that the elastic electromagnetic form factor at Q2 = 0 of a system in
this state is 1: F (Q2 = 0) = 1. We give also the asymptotical formulas [5,6] for
the normal and abnormal states n = 1, when the absolute valueB of the binding
energy tends to 0. For the normal state n = 1, κ = 0:

N2(B → 0) = 1 +
1

π

√
4B

m
log

4B

m

B→0−→ 1. (11)

For the abnormal state n = 1, κ = 2:

N2(B → 0) ∝
√
B

m
log2 B

m

B→0−→ 0. (12)

The last column of the Table 1 shows the contribution of the two-body sec-
tor N2 = 〈2|2〉 to the full normalization calculated with the coupling constant
α = 5. We see that it is small (N2 < 10%) for κ = 2 and very small N2 < 1%
for κ = 4. This means that these state are the many-body ones. Since in this
model any sector contains two massive constituents plus massless exchange par-
ticles, any many-body sector is filled by the exchange particles. The smallness
of N2 and, hence, the dominance of the Fock sectors with n > 2 means that
the abnormal states (κ = 2, 4, . . .) are indeed mainly made of the exchange par-
ticles. Strictly speaking, on the ground of N2 � 1 one cannot exclude that
these states are dominated, say, by three-body sector (two massive constituents
+ one exchange particle), that is N3 ≈ 1. We will see below that this situation is
excluded by behavior of the electromagnetic form factors.

4 Non-Relativistic Limit

The extra states predicted by the BS equation and enumerated by κ = 2, 4, . . .
have relativistic nature and disappear in the non-relativistic limit. It is instruc-
tive to see that explicitly. The principal difference of relativistic physics from
the non-relativistic one is existence of the limiting speed of propagation of sig-
nal – the speed of light c. If this limiting speed didn’t exist, we would be living
in the unique – non-relativistic – world, described by the Galilean physics for
any speeds and momenta. Therefore, most convenient way to take the non-
relativistic limit is to introduce the speed of light c explicitly and take the limit
c→∞. The dependence of the total massM on c is determined by the BS equa-
tion. The dependence of the absolute value of the binding energy B = 2m−M
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on speed of light c for the normal state n = 1, κ = 0 (No. 1 in the Table 1
for c = 1) is given in the left panel of Figure 2. We calculate at first in the
units with c = 1 and then put c = 2, 10, 20, . . . . Figure 2 shows, what hap-
pens with the binding energy in smooth transition from relativistic approach to
the non-relativistic one. Usually, the relativistic effects are repulsive. Therefore,
their weakening when c increases results in increase of attraction and of the the
binding energy. At c → ∞, in the left panel of Figure 2 the binding energy of
the normal state found via the BS equation tends to constant (which is given by
the Schrödinger equation, i.e., by the Balmer series (1)). In the case of abnormal
state n = 1, κ = 2 (No. 3 in the Table 1 for c = 1) this dependence is shown in
the right panel of Figure 2. We see that the binding energy of the abnormal state
has opposite behavior: it decreases and tends to zero when c increases. That is,
abnormal state disappears in the non-relativistic limit.
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Figure 2. Left panel: Dependence of the absolute value of the binding energy B = |E|
of the normal state n = 1, κ = 0 for α = 5 on speed of light c
Right panel: The same as in the left panel but for the abnormal state n = 1, κ = 2.

5 Elastic electromagnetic form factors

Knowledge of the BS amplitude for given system allows to calculate the electro-
magnetic form factor of this system. Expression for the electromagnetic current
via BS amplitude has the form:

Jµ = (pµ + p′µ)F (Q
2) = i

∫
d4k

(2π)4
(p+ p′ − 2k)µ (k2 −m2)

× Φ

(
1

2
p′ − k, p′

)
Φ

(
1

2
p− k, p

)
. (13)

From here we can express the elastic form factor F (Q2) via the BS amplitude.
This formula can be generalized for the transition electromagnetic current and
form factor (electromagnetic transition between two states in the spectrum).
Substituting here the BS amplitude in the form (6), we express form factors
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form factors for the normal and abnormal states and transitions between these
states. The details of calculations can be found in [5].

The electromagnetic form factor for the state with n = 1, κ = 0 (No.1
from the Table 1) is shown in the left panel of Figure 3. The electromagnetic
form factor for the state with n = 1, κ = 2 (No.3 from the Table 1) is shown
in the right panel of Figure 3. We see that form factor for the abnormal state
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Figure 3. Left panel: the electromagnetic form factor for the normal state with n =
1, κ = 0 (No.1 from the Table 1), α = 5, B = 0.999m.
Right panel: (i) solid curve: the electromagnetic form factor for the abnormal state with
n = 1, κ = 2 (No.3 from the Table 1), α = 5, B = 0.0035m; (ii) dashed curve: form
factor for the state with n = 1, κ = 0, but for the same binding energy (and rms radius)
as for the curve (i).

(right panel, solid curve) vs. Q2 decreases much faster than for the normal
one (left panel). For Q2 = 1 the form factor for abnormal state is almost 103

times smaller than for the normal one at Q2 = 10. This fast decrease can be
caused either by many-body nature of the abnormal state, or by its small binding
energy (by its large size). According to [12], the elastic form factor of a n-body
system should decrease as 1/(Q2)n−1. In Wick-Cutkosky model one can expect
even more fast decrease [5]: ∼ 1/(Q2)n. To make choice between these two
reasons (many-body nature or small binding energy), in Figure 3 we show by
dashed curve the form factor for the normal state but calculated for the same
binding energy (and rms radius) as for abnormal one. We see that it also quickly
decreases, but atQ2 = 1 it remains ten times larger than the abnormal state form
factor. Therefore, fast decrease of the abnormal form factor can be explained by
the small binding energy only partially. It indicates another reason which for the
abnormal state is its many-body structure. This is in accordance with its very
small two-body sector contribution (see last column in the Table 1 for κ = 2, 4).
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(right panel, solid curve) vs. Q2 decreases much faster than for the normal
one (left panel). For Q2 = 1 the form factor for abnormal state is almost 103

times smaller than for the normal one at Q2 = 10. This fast decrease can be
caused either by many-body nature of the abnormal state, or by its small binding
energy (by its large size). According to [12], the elastic form factor of a n-body
system should decrease as 1/(Q2)n−1. In Wick-Cutkosky model one can expect
even more fast decrease [5]: ∼ 1/(Q2)n. To make choice between these two
reasons (many-body nature or small binding energy), in Figure 3 we show by
dashed curve the form factor for the normal state but calculated for the same
binding energy (and rms radius) as for abnormal one. We see that it also quickly
decreases, but atQ2 = 1 it remains ten times larger than the abnormal state form
factor. Therefore, fast decrease of the abnormal form factor can be explained by
the small binding energy only partially. It indicates another reason which for the
abnormal state is its many-body structure. This is in accordance with its very
small two-body sector contribution (see last column in the Table 1 for κ = 2, 4).
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Figure the form factors for transition between the states of the same nature are
shown: normal→ normal (left panel) and abnormal→ abnormal (right panel).
Their maximal absolute values are approximately the same, though the latter
varies much more quickly. Whereas, the form factor for the transition normal→
abnormal state, shown in the lower panel, is suppressed by the factor 100.
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Figure 4. Upper left panel: transition form factor between two normal states:
No. 1 (n = 1, κ = 0) → No. 2 (n = 2, κ = 0) from the Table 1.
Upper right panel: transition form factor between two abnormal states:
No. 3 (n = 1, κ = 2) → No. 4 (n = 2, κ = 2).
Lower panel: transition form factor between the normal and abnormal states:
No. 1 (n = 1, κ = 0) → No. 3 (n = 1, κ = 2).

7 Conclusion

Wick [1] and Cutkosky [2] have shown that in the Coulomb relativistic prob-
lem (two particles interacting by massless exchange, analyzed in the framework
of the Bethe-Salpeter equation [3]) the spectrum is not reduced to the shifted
Coulomb levels En ∝ 1/n2. For the coupling constant α > π/4, extra infinite
series of levels appear. They are enumerated, for given n, by the extra quantum
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7 Conclusion

Wick [1] and Cutkosky [2] have shown that in the Coulomb relativistic prob-
lem (two particles interacting by massless exchange, analyzed in the framework
of the Bethe-Salpeter equation [3]) the spectrum is not reduced to the shifted
Coulomb levels En ∝ 1/n2. For the coupling constant α > π/4, extra infinite
series of levels appear. They are enumerated, for given n, by the extra quantum
number κ = 0, 2, 4, . . ., see (9). For κ = 0 these levels are the usual Coulomb
levels ∝ 1/n2 (though, beyond the order α2, with the coefficient corrected by
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the relativistic effects, see (8)). For κ = 2, 4, . . ., they are forming new series,
in addition to the Balmer series. They are not given by the Schrödinger equation
and they disappear in the non-relativistic limit. We have analyzed [5] the Fock
sector content of these states. It turned out that, in contrast to the normal states,
these extra (abnormal) states are dominated by the exchange massless particles,
moving with speed of light. That’s why they are absent in the Schrödinger equa-
tion framework. These abnormal states appear as a highly excited levels in the
enough strong field with α > π/4 that corresponds to the charge Z > 107.
Their experimental discovery (by analyzing spectrum and elastic and transition
form factors) seems not easy but solvable problem.

So far we discussed the systems bound by the electromagnetic interaction.
However, one should also mention glueballs and the hybrid states predicted in
QCD. In principle, the glueballs originate due to different reason - self-interactions
of gluons. They do not contain the constituent quarks. Besides, we considered
scalar massless colorless exchanges, when the problem of the color composite-
ness of the hybrid states does not appear. Whereas, the glueballs made of the
colored gluons must be colorless. This imposes restrictions of their composite-
ness. In our opinion, these differences, however, can be considered as secondary.
Generally, the main reason of origin of systems dominated by massless particles
is possibility of easy virtual creation of the latter ones in the intermediate states,
independently of particular mechanism of their creation: either self-interaction,
or exchanges between constituents, in the ladder approximation, or beyond it.
From this general point of view, the states discussed in the present article and
the glueballs can be considered as systems of similar nature.
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