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Abstract. We investigate the K+Σ− photoproduction by fitting an isobar
model to experimental data. However, the large number of parameters involved
(corresponding to prospective resonances), make the fitting procedure problem-
atic. We propose using regularization, a machine learning method that is cus-
tomarily used to prevent overfitting the data. Combined with model selection
criteria, this process effectively leads to an optimal selection of the resonances
involved in the reaction mechanism.

1 Introduction

The focus of the current study is the reaction γn → K+Σ−. Such reactions
play an important role in our understanding of the baryon spectrum; however,
due to a plethora of nucleon resonances in the energy region of interest (W ≈
1.6− 2.6 GeV) one is faced with a large number of fitting parameters and, most
importantly, a huge number of possible combinations of resonances to consider
- hence the need for model selection criteria, where by model we refer to an
optimal subset out of a group of candidate resonances. In section 3 we present a
method that has been used recently in similar contexts [1–3] and that comprises
some well-established statistical learning techniques [4]. The results presented
here have been reported in [5], while the data used are from [6] and [7].

2 The Isobar Approach

Due to their phenomenological nature, isobar models are based on several ap-
proximations [8, 9]. Their most important assumptions are that hadrons are
the fundamental degrees of freedom and their interactions are given in terms
of effective Lagrangians, while reaction amplitudes are constructed as sums of
lowest-order Feynman diagrams. Higher-order processes are implicitly taken
into account in effective couplings, which are obtained by fits to experimental
data. Three types of diagrams are possible at this level of approximation, de-
pending on the nature of the exchanged particle (nucleon, kaon or hyperon),
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each corresponding to the s, t and u Mandelstam variables. These diagrams
are further distinguished according to whether the exchanged particle is in its
ground, or in a resonant state (N∗,K∗, Y ∗) leading to their characterization as
Born or non-Born diagrams, respectively. Considering these six types of inter-
actions, the exchanges of N∗ or ∆∗ (the s, non-Born diagram) produce resonant
structures in the cross-section, while the rest of the diagrams contribute only to
the “background”.

3 Regularized Least-Squares Fitting and Information Criteria

One of the central issues in statistical modeling is optimal model complexity.
Models that are too complex (e.g. with more parameters than necessary) tend
to overfit the data, as opposed to simple models that underfit the data and lead
to large error values. Overfitting is the result of fitting the noise in the sample,
leading to a model of very low predictive power. A common way to deal with
this problem is through the technique known as regularization, where the error
function is redefined as

χ2
T = χ2 + P (λ), (1)

with

χ2 =

N∑
i=1

[di − pi(w1, . . . , wk)]2

(σstat
di

)2
, (2)

the ordinary χ2 error function, while

P (λ) = λ4
k∑

j=1

|wj |q, (3)

a penalty term containing the k parameters {w1, w2 . . . wk}, with respect to
which the χ2 function is minimized.

The presence of the P (λ) term in the regularized error function (χ2
T ) im-

poses a constraint on the parameter values and effectively prevents overfitting.
The magnitude of the λ regularization parameter determines the strength of the
constraint, while the power q determines its type. The fact that λ is raised to the
power of 4 allows us to focus more on the region of small λ’s. In the case of
q = 1, which is known in the literature as Least Absolute Shrinkage and Selec-
tion Operator (LASSO) regularization [4], some of the parameters are shrunk to
zero. In this case, λ determines how sparse the resulting model is.

At this point, one can apply the information criteria (IC), namely the Akaike
(AIC) [10] and Bayesian (BIC) [11], that help to determine the optimal value of
λ, as the one that minimizes the corresponding expressions: AIC = 2k+χ2

T and
BIC = k log(N) + χ2

T , where k is the number of parameters of the model and
N is the size of the data set. The result of this process can be seen in Figure 1.
Apparently, all criteria give similar results that differ only by a scale factor.
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Figure 1. The Akaike (blue), a modified version known as corrected Akaike (orange), and
Bayesian (green) information criteria for various values of the regularization parameter
λ. Please, note the logarithmic scale of the vertical axis. (Taken from [5]).

4 Numerical Results and Discussion

In the present work, two fits were conducted. The one, denoted as fit M, is the
result of ordinary χ2 minimization (with the help of the Minuit package) on a set
of resonances derived from previous studies [9, 12]. In the second one, denoted
as fit L, LASSO regularization was applied, combined with the aforementioned
information criteria, leading to a sparser model.

Apart from the coupling constants, cut-off values for hadron form factors are
included as free parameters in our model. Resonances with spin-1/2 provide one
coupling constant and resonances with spins-3/2 or 5/2 provide two coupling
constants, each. Masses and widths of the resonances were taken from [13].
The results of the fitting procedures are summarized in Table 1.

Table 1. A summary of the features of the two fits.

M: Minuit L: LASSO + IC
no. of resonances 14 9
no. of parameters 25 17
χ2 / n.d.f. 2.4 3.2

The photon beam asymmetry Σ is defined as

Σ =
dσ⊥ − dσ‖

dσ⊥ + dσ‖
(4)

where dσ‖ denotes the differential cross section when the incident photon beam
is linearly polarized in the x-direction and dσ⊥ the differential cross section
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Figure 2. Photon beam asymmetry data compared to the full fit M results (solid line).
Same fit, with the N(1720) 3/2+ (dashed line) and ∆(1900) 1/2− (dotted line) reso-
nances omitted. The data are from CLAS [6] and LEPS [7] experiments.

when the photon beam is polarized in the y-direction. Figures 2 and 3 (taken
from [5]) demonstrate how the results of the two fitting procedures M and L
compare to the data on the Σ asymmetry. A useful observation that can be
drawn from these figures is the importance of the N(1720) 3/2+ resonance,
given the disagreement with the data when it is omitted from the fits.

5 Conclusion

In our study of kaon photo-production off a neutron target with an isobar model
we have incorporated recent polarization data and have employed a novel ap-
proach to fitting. The application of LASSO regularization in combination with
information criteria provides a tool for automatic selection of parameters based
on their information content. This turned out to be especially useful in our case,
where the number of possible combinations of resonances is prohibitively large
in the region of interest.

124



A Study of the K+Σ− Photo-production with an Isobar Model

Figure 3. Photon beam asymmetry data as in Figure 2, compared to fit L results (solid
line). Same fit, with the K∗(892) (dash-dotted line), N(1720) 3/2+ (dashed line) and
N(2060) 5/2− (dotted line) resonances omitted.
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[2] J. Landay, M. Döring, C. Fernández-Ramı́rez, B. Hu and R. Molina, Phys. Rev. C

95 (2017) 015203.
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