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Abstract. The equation of state of neutron-rich matter is at the forefront of
nuclear astrophysics because of its role in shaping the properties of neutron
stars. Recently, interest in compact stars has increased considerably as we have
entered the “multi-messenger era” of astrophysical observations. The recent
GW170817 neutron star merger event has yielded new and independent con-
straints on the radius of the canonical mass neutron star. Astronomy with gravi-
tational waves provides additional opportunities to explore these exotic systems
and other yet unknown regimes in the Cosmos. We discuss neutron star pre-
dictions based on our most recent equations of state. These are derived from
chiral effective field theory, which allows for a systematic development of nu-
clear forces, order by order. We utilize high-quality two-nucleon interactions
and include all three-nucleon forces up to fourth order in the chiral expansion.

1 Introduction

Neutron stars (NS) are intriguing systems. For one thing, NS studies reach out
to all the fundamental forces in nature. Also, they offer the opportunity to study
matter under conditions not typically encountered in terrestrial laboratories. The
equation of state (EoS) of both neutron matter (NM) and symmetric nuclear
matter (SNM), and the closely related symmetry energy, play a paramount role
in stellar structure.

A neutron star is the remnant collapsed core of a giant star which has un-
dergone a supernova explosion. Only stars with sufficient mass, estimated to be
between 8 and 25 M�, undergo a supernova event at the end of their life cy-
cle. Due to its extremely compact nature, the neutron star is directly supported
against further gravitational collapse into a black hole by mechanisms of nuclear
origin, which make these objects excellent natural laboratories for exploring the
nuclear equation of state (EoS).

The mass-radius relationship of neutron stars is uniquely determined from
the star’s EoS and thus reliable observational constraints can shed light on the
EoS. While the radius cannot be directly measured, the mass of neutron stars
in binary systems can be inferred from observation together with application of
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gravitational theory. With constraints on the mass of a star, the Doppler shift
is one way to estimates the radius. The neutron star radius is not measured
directly, but observational data allow for indirect inference. Observation-based
constraints consistently place the estimated radius of a neutron star in the range
of 10-15 km. For instance, using accreting and bursting sources, the radius of
the canonical-mass neutron star was determined to be within a range of 10.4 to
12.9 km [1], while analysis from the LIGO/Virgo observations determined the
radius to be between 11.1 and 13.4 km [2]. Upper limits on the neutron star
radii, as determined from iron emission lines, were placed between 14.5 and
16.5 km [3].

Neutron star models are generally in good agreement with observational con-
straints for the radius. For instance, the radius of the canonical-mass neutron
star predicted from the set of EoS applied in Ref. [4] is predicted to be in the
range 10.45–12.66 km. From a variety of techniques, based on experimentally
determined quantities correlated to symmetry energy parameters, the radius is
determined to be between 10.7 to 13.1 km [4–7], while using a range of theo-
retical models a limit of 9.7 to 13.9 km is obtained [4, 8, 9]. Recent surveys of
neutron star physics and theoretical approaches include Refs. [10–12]. Exotic
matter in stars is addressed, for instance, in Ref. [13].

The predictions discussed here are based on Refs. [14–16]. When discussing
predictions and constraints, we emphasize the importance of ab initio vs. phe-
nomenological approaches.

2 The Nuclear Physics Input

The EoS for neutron and symmetric matter are obtained at the leading-order
in the hole-line expansion – namely, via a non-perturbative calculation of the
particle-particle ladder. The single-particle potentials are computed self-consis-
tently with the G-matrix, employing a continuous spectrum.

2.1 The two-nucleon force

The two-nucleon forces (2NF) we apply are from Ref. [17], a family of high-
quality potentials from leading order (LO) to fifth order (N4LO) of the chiral
EFT. The interactions in this set are more internally consistent than those from
the previous generation [18]. Furthermore, the long-range part of these poten-
tials is tightly constrained by the πN low-energy constants (LECs) from the
Roy-Steiner analysis of Ref. [19]. This analysis is sufficiently accurate to render
errors in the πN LECs essentially negligible for the purpose of quantifying the
uncertainty.

2.2 The three-nucleon force

In the framework of the ∆-less chiral EFT (which we apply), The first occurence
of three-nucleon forces (3NF) is seen at the third order. The leading 3NF con-
sists of three components [20]: the long-range two-pion-exchange (2PE) graph,
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Figure 1. Energy per particle in neutron matter as a function of density from leading to
fourth order of chiral perturbation theory. The cutoff is fixed at 450 MeV. The EoS are
those obtained in Ref. [14].

which depends on LECs c1, c3, and c4, the medium-range one-pion-exchange
(1PE) diagram, carrying the LEC cD, and a short-range contact term, containg
the LEC cE . We recall that the terms depending on c4, cD, and cE do not con-
tribute in neutron matter [21]. In infinite matter, it is possible to construct ap-
proximate expressions for the 3NF as density-dependent effective two-nucleon
interactions as derived in Refs. [22, 23]. These can be written in terms of the
well-known non-relativistic two-body nuclear force operators and, thus, can be
easily implemented in the NN partial wave formalism for the G-matrix, which
leads to the EoS.

We also include the subleading (N3LO) 3NF, derived in Ref. [24, 25]. Ref-
erences [26–29] report applications of the subleading 3NF in some many-body
systems. The long-range part of the 3NF at N3LO includes: the 2PE topol-
ogy, which is the longest-range contribution, the two-pion-one-pion exchange
(2P1PE) topology, and the ring topology, which represents a pion being ab-
sorbed and reemitted from each of the three nucleons. We include relativistic
corrections as well and find them to be very small (less than one MeV).

In Figure 1, we show the EoS in NM over four orders, from LO to N3LO [14].
Large variations at low orders are of course not surprising, nor is the remark-
able impact of the leading 3NF at N2LO. The transition to fourth order brings
in a slight increase in attraction, as was found from other EFT-based predic-
tions [30].The overall convergence pattern is encouraging.

In Figure 2 an analogous presentation is provided for SNM. Similar con-
siderations apply with regard to the order-by-order convergence pattern and the
3NF “signature” as in NM.
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Figure 2. Energy per particle in symmetric nuclear matter as a function of density from
leading to fourth order of chiral perturbation theory. The cutoff is fixed at 450 MeV. The
shaded box marks the empirical saturation point. The EoS are the same as obtained in
Ref. [15].

Once the EoS for NM and SNM are available, the EoS for stellar matter
in β-equilibrium is easily obtained from the condition of energy minimization,
subjected to the constraints of conserved nucleon density and global charge neu-
trality.

3 Polytropic Extrapolation

Chiral predictions have a limited domain of validity, which, in the previous sec-
tion, we estimated to be about twice saturation density. The densities within neu-
tron stars can reach five to six times saturation density, and therefore an appro-
priate method for extrapolating the EoS to these densities must be employed. To
accomplish this, we express the high density pressure through polytropes [31]:

P (ρ) = ρ2 ∂eT (ρ)

∂ρ
= αρΓ , (1)

where α is chosen such as to ensure continuity at the matching density. A com-
ment is in place: while continuity of the pressure is of course preserved, addi-
tional considerations are necessary to ensure continuity of the derivative. The
latter would be essential to implement thermodynamic consistency of the piece-
wise EoS, which is beyond our present scope. Note, further, that the presence of
discontinuities in the polytropic index is not unusual for the purpose of describ-
ing the global features of the star [31]. Following Ref. [32], we match piecewise
polytropes to the ab initio predictions as explained next.

The microscopic predictions reach a Fermi momentum of 1.6 fm−1, which
corresponds to 2.016 fm−1 in pure neutron matter at the same density,
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ρ = 0.277 fm−3. The standard practice is to ensure that the characteristic
momentum of the system, p, divided by the cutoff, Λ, is a reasonable expan-
sion parameter. Taking p to be the average momentum in a free Fermi gas of
neutrons at the highest density we consider, we obtain a value of 68% for p/Λ,
which is a pessimistic estimate, since the average momentum in β-stable matter
is smaller than in pure NM. Having chosen the matching density, ρ1, we join
the pressure predictions with polytropes of different adiabatic index, ranging
from 1.5 to 4.5. This range is chosen following guidelines from the literature,
in particular Ref. [31], where constrains on phenomenologically parameterized
neutron-star equations of state are investigated. To simulate a (likely) scenario
where the pressure displays different slopes in different density regimes, we de-
fine a second matching density, ρ2, approximately equal to 2ρ1, at which point
a set of polytropes covering the same range of Γ is attached to each of the previ-
ous polytropes. This is illlustrated in Figure 3. It is important to emphasize that
high-density EoS extrapolations are not meant to be a replacement for micro-
scopic theoretical predictions [32] which, at this time, are not feasible at super-
high densities. Instead, the spreading of the high-density pressure values from
the piecewise variation of the polytrope index allows to probe the sensitivity of
lower-density predictions to the much larger uncertainty at high density.

To construct a physical EoS for high densities, we must apply additional
constraints. One is the causality limit, which imposes the speed of sound in
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Figure 3. Pressure in β-stable matter as a function of density. The figure shows the
spreading of the pressure values due to the matching of polytropes at two densities, ρ1 =
0.277 fm−3 and ρ2 = 0.506 fm−3. Each group of curves with the same color contains
EoSs with the same Γ1 and varying Γ2. The microscopic predictions (single pink curve
prior to the first matching point), are obtained at N3LO and cutoff equal to 450 MeV.
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matter to be less than the speed of light. In terms of P (ε), the causality condition
reads

dP (ρ)

dε(ρ)
< 1 . (2)

Additionally we will only consider polytropes which can support a maxi-
mum mass of at least 2.01 M�, to be consistent with the lower limit of the
(2.08 ± 0.07) M� observation reported in Ref. [33] for the J0740+6620 pulsar
along with a radius estimate of (12.35 ± 0.75) km. To complete the EoS on the
low-density side, we attach a crustal EoS [34, 35].

With the EoS available over a full range of densities, we obtain the mass-
radius relation in a neutron star by solving the relativistic equations for hydro-
static equilibrium, the TOV equations [36,37], from which the mass-radius rela-
tionship emerges for a given input EoS.

3.1 Results

To offer the reader a broader overview, we show in Table 1 the value of the
symmetry energy and the slope parameter L with their uncertainty, where L is
defined as

L = 3ρo

(∂esym(ρ)

∂ρ

)
ρo
. (3)

These values were shown in Ref. [14] and compared to recent constraints.
We proceed with pressure predictions. Figure 3 displays the pressure in stel-

lar matter as a function of the number density. The various curves span the range
of acceptable combinations of polytropes, as explained in Section 3.

The mean value and standard deviation are (R̄1.4 = 11.96 ± 0.58) km. The
same procedure is applied at the lower orders, LO to N2LO – that is, the EoS
at each order is extended with polytropes and the mean value of the radius is
calculated. With radius predictions available from leading to fourth order, we
determine the truncation error. Combining the truncation and extrapolation un-
certainties in quadrature, we state our estimate of the radius as

R1.4 = (11.96 ± 0.80) km , (4)

in excellent agreement with the LIGO/Virgo range of 11.1 to 13.4 km [2].
Our result is within the range generally found with EoS based on chiral EFT,

which is 10 km to 14 km [38, 39], accounting for additional theoretical uncer-
tainties, such as those originating from the choice of the many-body method and

Table 1. The symmetry energy and the slope parameter at N3LO at saturation density ρo.
L is defined as in Eq. (3).

ρ0 (fm−3) esym(ρo) (MeV) L(ρo) (MeV)

0.16 31.3 ± 0.8 52.6 ± 4.0
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the implementation of the 3NF [40–44]. Some sensitivity of R1.4 to the match-
ing density was found [45, 46]. Moving the matching density from ρ0 to 2ρ0

changed the range to (9.4–12.3) km [46] and to (10.3–12.9) km [45]. In the
present analysis, the first matching point is determined by the highest density
we reach out with the EFT calculations – a natural matching point. As for the
second matching density, the details of the extension at the higher densities has
only a minor impact on R1.4.

4 Conclusion

A fully microscopic EoS up to central densities of the most massive stars – po-
tentially involving non-nucleonic degrees of freedom and phase transitions – is
not within reach. Nevertheless, neutron stars are powerful natural laboratories
for constraining theories of the EoS. One must be mindful about the theory’s
limitations and the best ways to extract useful information from the observa-
tional constraints. Concerning the latter, there is no doubt that The golden age
of neutron-star physics has arrived. [47].

Recently, we developed EoS for NM and SNM based on high-quality 2NF
at N3LO and including all subleading 3NF. These were used to construct the
symmetry energy and the EoS in β-equilibrated matter, from which proton and
lepton fractions are easily extracted. The stellar matter EoS was then extended to
densities inaccessible to chiral EFT by matching it with piecewise polytropes of
different adiabatic index. From those combinations, we dropped the EoS which
did not satisfy the maximum mass constraint. The causality condition is also
applied.

Constraints on the radius of a medium-mass neutron star, R1.4, are becom-
ing more stringent, with the current uncertainty reported at about 2 km. Further-
more, R1.4 is known to be sensitive to the pressure in neutron-rich matter near
normal densities, accessible to modern effective field theories of nuclear forces.
For these reasons, we focused on predicting R1.4 with proper uncertainy quan-
tification. From reports in the literature, our predicted range would increase by
about 1 km on either side when additional theoretical uncertainties are included.

Based on our analysis, we are confident that the estimate given in Eq. (4),
approximately (12 ± 1) km, is characteristic of EFT predictions based on high-
quality 2NF and properly calibrated (leading and subleading) 3NF. The range
currently cited for chiral EFT-based predictions of R1.4 is between 10 km and
14 km, accounting for additional theoretical uncertanties. In fact, it is interest-
ing to notice that the extensive analysis from Ref. [45], where 300,000 possible
EoS were generated, provides a range for R1.4 between 10.0 and 12.7 km, with
12.0 km being the most probable value. We recall that the outcome of PREX
II gives 13.33 km as the lower limit for the radius – which is problematic to
reconcile with a multitude of microscopic predictions [48].

In conclusion, we reiterate that gravitational wave astronomy offers new ex-
citing opportunities for nuclear astrophysics. Even though chiral EFT cannot
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reach out to the extreme-density and yet unkown regimes at the core of these
remarkable stars, continuosly improved ab initio calculations of the nuclear EoS
are an essential foundation for interpreting current and future observations in
terms of microscopic nuclear forces.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Award Number DE-FG02-03ER41270.

References

[1] A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 765 (2013) L5.
[2] E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120 (2018) 172703.
[3] E.M. Cackett, S. Bhattacharyya, J.E. Grindley, M. van der Klis, T.E. Strohmayer,

J.M. Miller, J. Homan, M.C. Miller, R. Wijnands, Astrophys. J. 674 (2008) 1.
[4] J.M. Lattimer, A.W. Steiner, Astrophys. J. 784 (2014) 123.
[5] W.G. Newton, M. Gearheart, J. Hooker, B.A. Li, In: Neutron Star Crust Eds: C.A.

Bertulani, J. Piekarewicz (Nova Science Pub. Inc.: Hauppauge, NY, USA, 2011)
Chapter 12.

[6] M.B. Tsang, J.R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C.J.
Horowitz, J. Lee, W.G. Lynch, Z. Kohley, et al., Phys. Rev. C 86 (2012) 015803.

[7] J.M. Lattimer, Y. Lim, Astrophys. J. 771 (2013) 51.
[8] A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108 (2012) 081102.
[9] K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773 (2013) 11.
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[20] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, H. Witala, Phys.

Rev. C 66 (2002) 064001.
[21] K. Hebeler, A. Schwenk, Phys. Rev. C 82 (2010) 014314.
[22] J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 79 (2009) 054331.
[23] J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 81 (2010) 024002.
[24] V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 77 (2008) 064004.

154

https://doi.org/10.1007/978-3-319-97616-7_6
https://doi.org/10.1007/978-3-319-97616-7_6
https://doi.org/10.1007/978-3-319-97616-7_6
https://arxiv.org/abs/1805.00837
https://arxiv.org/abs/1805.00837


The Equation of State of Neutron-Rich Matter at Fourth Order of ...

[25] V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84 (2011) 054001.
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