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Abstract. I review ab initio predictions for light and intermediate-mass nuclei
as well as nuclear matter. The problems we are facing in this area are outlined
and their relationship to the two- and many-nucleon forces currently in use are
discussed. A recent claim that those problems have been solved is critically
investigated.

One of the most fundamental aims in theoretical nuclear physics is to un-
derstand nuclear structure and reactions in terms of the basic forces between
nucleons. As discussed in numerous review papers [1–5], the nuclear physics
community presently perceives chiral effective field theory (EFT) as the authori-
tative paradigm for the derivation of those forces. This perception is based upon
a clearly defined relationship between the fundamental theory of strong interac-
tions, QCD, and chiral EFT via symmetries.

Since a while, it is well established that predictive nuclear structure must
include three-nucleon forces (3NFs), besides the usual two-nucleon force (2NF)
contribution. The advantage of chiral EFT is that it generates 2NFs and multi-
nucleon forces simultaneously and on an equal footing. In the ∆-less theory [1],
3NFs occur for the first time at next-to-next-to-leading order (NNLO) and con-
tinue to have additional contributions in higher orders. Four-nucleon forces
(4NFs) start at next-to-next-to-next-to-leading order (N3LO), but are difficult
to implement, which is why they are left out in most present-day calculations.
If an explicit ∆-isobar is included in chiral EFT (∆-full theory [6–9]), then
3NF contributions start already at next-to-leading order (NLO), which leads to
a smoother convergence when advancing from leading order (LO) to NNLO.
However, summing up all contributions up to NNLO leads to very similar re-
sults for both versions of the theory [9]. The convergence of both theories be-
yond NNLO is expected to be very similar.

In the initial phase, the 3NFs were typically adjusted in A = 3 and/or the
A = 4 systems and the ab initio calculations were driven up to the oxygen
region [10]. It turned out that for A <∼ 16 the ground-state energies and radii
are predicted about right, no matter what type of chiral or phenomenological
potentials were applied (local, nonlocal, soft, hard, etc.) and what the details of
the 3NF adjustments to few-body systems were [10–13]. It may be suggestive
to perceive the α substruture of 16O to be part of the explanation.
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The picture changed, when the many-body practitioners were able to move
up to medium-mass nuclei (e. g., the calcium or even the tin regions). Large
variations of the predictions now occurred depending on what forces were used,
and cases of severe underbinding [14] as well as of substantial overbinding [15]
were observed. Ever since the nuclear structure community understands that the
ab initio explanation of intermediate and heavy nuclei is a severe, still unsolved,
problem.

A seemingly successfull interaction for the intermediate mass region appears
to be the force that is commonly denoted by “1.8/2.0(EM)” (sometimes dubbed
“the Magic force”) [16, 17], which is a similarity renormalization group (SRG)
evolved version of the N3LO 2NF of Ref. [18] complemented by a NNLO 3NF
adjusted to the triton binding energy and the point charge radius of 4He. With
this force, the ground-state energies all the way up to the tin isotopes are re-
produced perfectly—but with charge radii being on the smaller side [19, 20].
Nuclear matter saturation is also reproduced reasonably well, with a slightly too
high saturation density [16]. However, these calculations are not consistently ab
initio, because the 2NF of “1.8/2.0(EM)” is SRG evolved, while the 3NF is not.
Moreover, the SRG evolved 2NF is used like an original force with the induced
3NFs omitted. Still, this force is providing clues for how to get the intermediate
and heavy mass region right.

Thus, in the follow-up, there have been attempts to get the medium-mass
nuclei under control by means of more consistent ab initio calculations [21]. Of
the various efforts, we will now single out three, which demonstrate in more
detail what the problems are.

In Ref. [22], recently developed soft chiral 2NFs [23] at NNLO and N3LO
were picked up and complemented with 3NFs at NNLO and N3LO, respectively,
to fit the triton binding energy and nuclear matter saturation. These forces were
then applied in in-medium similarity renormalization group (IM-SRG [24]) cal-
culations of finite nuclei up to 68Ni predicting underbinding and slightly too
large radii [25].

In a separate study [26], the same 2NFs used in Refs. [22,25] were employed,
but with the 3NFs now adjusted to the triton and 16O ground-state energies. The
interactions so obtained reproduce accurately experimental energies and point-
proton radii of nuclei up to 78Ni [26]. However, when the 2NF plus 3NF com-
binations of Ref. [26] are utilized in nuclear matter, then dramatic overbinding
and no saturation at reasonable densities is obtained [27].

Obviously, there is a problem with achieving simultaneously reasonable re-
sults for nuclear matter and medium mass nuclei: In Refs. [22,25], nuclear mat-
ter is saturated right, but nuclei are underbound; while in Ref. [26], nuclei are
bound accurately, but nuclear matter is overbound.

On this background, it came across like a bombshell when, recently, the
Gőteborg-Oak Ridge (GO) group [28,29] claimed that they had solved that prob-
lem by way of an NNLO model which includes ∆-isobars. With this model,
the authors obtain “accurate binding energies and radii for a range of nuclei
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Figure 1. Chiral 2NF without and with ∆-isobar degrees of freedom. Arrows indicate
the shift of strength when explicit ∆’s are added to the theory. Note that the ∆-full
theory consists of the diagrams involving ∆’s plus the ∆-less ones. Solid lines represent
nucleons, double lines ∆-isobars, and dashed lines pions. Small dots, large solid dots,
solid squares, and diamonds denote vertices of index δi = 0, 1, 2, and 4, respectively. Λb

denotes the breakdown scale.

from A = 16 to A = 132, and provide accurate equations of state for nu-
clear matter” [29]. However, the accuracy of the NN interactions applied was
not checked against NN data. Another aspect of interest (not investigated in
Refs. [28, 29]) is if the inclusion of ∆-degrees of freedom leads to a higher de-
gree of softness. Note that the successful “Magic” 1.8/2.0(EM) potential is very
soft since it is SRG evolved. Moreover, a recent study [30], which investigated
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the essential elements of nuclear binding using nuclear lattice simulations, has
come to the conclusion that proper nuclear matter saturation requires a consid-
erable amount of non-locality in the NN interaction implying a high degree of
softness.

Thus, there is a need for a deeper understanding of the elements in the recent
model by the GO group [28, 29], and how they come together to produce the
reported favorable nuclear structure predictions. To gain this deeper insight, the
following issues need to be addressed:

1. What are the precision and accuracy of the ∆-full NN potentials devel-
oped in Ref. [29]? In the context of chiral EFT, this amounts to asking
whether the precision of the ∆-full potentials is consistent with the un-
certainty of the chiral order at which they have been derived. And, is the
accuracy sufficient for meaningful ab initio predictions? If there are prob-
lems with precison and/or accuracy, how does that impact the predictions
for nuclear many-body systems?

2. Does the inclusion of ∆-isobars increase the smoothness of the interaction
and, if so, how does the ∆ degree of freedom accomplish that?

We have investigated the above-raised questions in Ref. [31]. Following the
notation introduced in Ref. [29], potentials at NNLO of the ∆-full theory will
be denoted by “∆NNLO.” The diagrams to consider are displayed in Figure 1.
For illustrative purposes, the figure includes also the graphs that occur at N3LO.
The powers that are associated with the various orders are calculated as follows.
For a connected diagram of NN scattering, the power is given by [1]

ν = 2L+
∑

i

δi , (1)

with vertex index

δi ≡ di +
fi
2

− 2 , (2)

whereL denotes the number of loops. Moreover, for each vertex i, di is the num-
ber of derivatives or pion-mass insertions and fi the number of fermion fields.
The sum runs over all vertices i contained in the diagram under consideration.

In Ref. [29], the GO group presented two ∆NNLO models, which — follow-
ing the GO notation — are marked by ∆NNLO(450)GO and ∆NNLO(394)GO,
where the parenthetical number denotes the value for the cutoff Λ in units of
MeV used in the regulator function. In Figure 2, we display the phase parame-
ters for neutron-proton scattering as predicted by the GO models [solid red line
∆NNLO(450)GO, dashed red ∆NNLO(394)GO] and compare them with the
Nijmegen [32] and the Granada [33] phase-shift analyses. It is clearly seen that
the predictions deviate substantially from the analyses. This is also reflected in
the χ2/datum for the reproduction of the NN data shown in Table 1.
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Figure 2. Neutron-proton phase shifts
below 100 MeV for three critical P -
waves as predicted by the Gőteborg-
Oak Ridge (GO) potentials [29]
[solid red line ∆NNLO(450)GO,
dashed red ∆NNLO(394)GO] and by
our refit (Rf) potentials [solid blue
line ∆NNLO(450)Rf , dashed blue
∆NNLO(394)Rf ]. The filled and open
circles represent the results from the
Nijmegen [32] and the Granada [33] np
phase-shift analyses, respectively.

We have then constructed ∆NNLO models with improved fits—for the pur-
pose of explicitly checking out whether, within the ∆-full theory, we can achieve
χ2 that are consistent with the χ2 obtained in Ref. [23] for the ∆-less theory.
We have dubbed our refits ∆NNLO(450)Rf and ∆NNLO(394)Rf (where “Rf”
stands for Refit) and, indeed, their χ2 are very similar to the ones of Ref. [23]
of the ∆-less theory. The phase shifts of the refits are displayed in Figure 2 by
the blue solid and blue dashed lines. The conclusion is that, within the ∆-full
theory, fits can be achieved that are of the same quality as in the ∆-less theory.

Our investigation [31] has come to the following conclusions:

1. The ∆-full NN potentials at NNLO constructed by the Gőteborg-Oak
Ridge (GO) group [29] are up to 40 times outside the theoretical error of
chiral EFT at NNLO and are, therefore, inconsistent with the EFT that the
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Table 1. χ2/datum for the reproduction of the NN data by the Gőteborg-Oak Ridge
(GO) potentials. The Hamada-Johnston potential [34] is included for comparison

Bin (MeV)
Hamada-Johnston potential

∆NNLO(450)GO ∆NNLO(394)GOof 1962 [34]

proton-proton
0–100 19.6 60.7 34.3
0–200 13.8 46.3 39.7

neutron-proton
0–100 5.87 8.58
0–200 14.2 26.2

pp plus np
0–100 28.8 19.3
0–200 29.6 32.6

potentials are intended to be based upon (cf. the phase-shifts of some cru-
cial P -waves shown in Figure 2). Moreover, these potentials reproduce
the NN data with a very large χ2/datum (cf. Table 1). This is unaccept-
able based on contemporary precision standards.

2. The predictions by the GO NN potentials for the energy per nucleon
in nuclear matter are very attractive, similar to the predictions by the
1.8/2.0(EM) NN potential of Ref. [16], also known as ‘Magic’ (cf. Fig-
ure 3). The extremely attractive nature of both the GO and the Magic
potentials is the reason for the favorable reproduction of the energies (and
radii) of intermediate-mass nuclei, which have proven to be a problem in
ab initio nuclear structure physics. However, the extra attraction in the
GO potentials which brings them to the level of Magic can be traced to
incorrect P -wave and ε1 mixing parameters.

3. When all phase parameters, including the P -wave and the ε1-mixing pa-
rameters, are fitted within the NNLO truncation error, then the extra attrac-
tion disappears and the nuclear matter predictions become very similar to
the ones by NN potentials constructed within the ∆-less theory (cf. Fig-
ure 3). Thus, we find claims that ∆-full potentials lead to more attraction
in nuclear many-body systems to be incorrect.

4. The extraordinarily attractive nature of Magic is due to its high degree of
nonlocality which, in turn, is due to its SRG construction. This degree of
nonlocality is not achieved by chiral NN potentials, no matter if ∆s are
included or excluded, because all two-pion exchange (2PE) contributions
in both version of the theory are local (at least up to NNLO) and nonlocal-
ity is generated only by the regulator function, which adds only moderate
nonlocality.
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Figure 3. Energy per nucleon in symmetric nuclear matter, E, as a function of density,
ρ, as generated by some two-body forces. Notation for the ∆NNLO potentials as in
Figure 2. Magic (solid green line) refers to the 1.8/2.0(EM) potential of Ref. [16]. The
shaded band includes the theoretical uncertainties associated with the predictions by the
Rf potentials (blue lines). Note that this shaded band also covers the predictions by the
∆-less NNLO and N3LO potentials of Ref. [23] applied in Ref. [25] to intermediate-mass
nuclei. The grey box outlines the area where nuclear saturation is expected to occur.

5. The problem with a microscopic description of intermediate mass nuclei
with realistic chiral nuclear forces remains, unfortunately, unsolved.
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