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Abstract. This contribution discusses the exploration of conformal symme-
try in intermediate states of compound nuclei with the aid of the unitary limit.
The latter manifests itself in a heavy A+2n compound nucleus in view of the
tuning of the scattering length between two cold neutrons (2n) and the target
nucleus (A). Fluctuations of cross sections are identified as the experimental
means through which the unitary limit can be examined in nuclear physics.

1 Introduction

Low-lying, collective nuclear states in heavy, even-even nuclei constitute the
primary example of how simple regularity patterns emerge from the complex
collective motions of bound nucleons. The first model that predicted such re-
markable regularities in nuclear spectra and transition rates was the Bohr Hamil-
tonian [1]. It established the concepts of nuclear shape and deformation as the
classical analogs of the rotational spectra of atomic nuclei. Then, with the estab-
lishment of nuclear shell effects, the role of particle-hole excitations illustrated
the emergence of collective effects out of single particle motions [2].

The first samples of analyzing collective motions of nucleons in terms of
interacting bosons appeared in the late sixties in Iachello’s Ph.D. thesis [3].
However, during the previous decade, intensive research led by Hermann Fesh-
bach [4] on the formalism of intermediate states of compound nuclei had already
revealed the tremendous complexity of nuclear excitations in the continuum. In-
termediate states of A + 1n compound nuclei - the so-called doorway states
- exemplified one aspect of that complexity. In the 70s, doorway states were
experimentally investigated via the fluctuations of the cross-sections as bound
states in the continuum. Today these states are included in the formalism of the
continuum Shell-Model [5].

The establishment of the Interacting Boson Model [6] produced a simple and
operational classification scheme of the symmetries exhibited in bound, low-
lying collective states of heavy, even-even atomic nuclei under the U(6) sym-
metry group. The three dynamical symmetry limits of the model U(5), O(6),

15



P.E. Georgoudis

and SU(3) arise under three different subgroup chains of the U(6). A spin zero
s boson and a spin two d boson are its building blocks. The s and d bosons
are identified as valence nucleon pairs of total angular momentum zero and two,
respectively. An overall fixed boson number Nb determines an atomic nucleus.
A Schrödinger equation for theO(6) limit of the IBM has been developed by the
Mexico school [7] where one focuses on the boson number radius ρ. That ra-
dius remains invariant under the O(6) group of rotations for the six-dimensional
harmonic oscillator of IBM’s U(6) symmetry group.

On the other hand, cold and dilute atomic gases manifest the so-called uni-
tary limit in the vicinity of Feshbach resonances [9]. The unitary limit is a the-
oretical benchmark that accompanies interesting physical phenomena like the
BCS-Bose Einstein Condensation crossover and a quantum critical point. In
parallel, it refers to a strong coupling problem described by a Conformal Field
Theory [10]. The theoretical application of the unitary limit in nuclear physics
was first realized in light nuclei [11]. It emerged parallel with the development
of Effective Field Theories [12]. Conformal invariance arises at the critical point
of a second-order phase transition [13] as well as in Quantum Chromo Dynamics
at the limit of a large number of gluons [14]. In that perspective, introducing the
unitary limit in heavy even-even nuclei commences the investigation of algebraic
relations between the symmetries of the IBM with the conformal symmetry of
second-order critical points. In parallel, it explores algebraic relations with the
limit of conformal invariance in a strong coupling problem (unitary limit) that is
amenable to be incorporated afterward with QCD.

Notwithstanding the profound complexity of the fluctuations of cross sec-
tions in A + 1n compound nuclei [5], those fluctuations of intermediate states
of A+ 2n compound nuclei are largely unexplored. This contribution points to
the emergence of regularity patterns in fluctuations of cross sections of A + 2n
compound nuclei due to the representations of conformal symmetry. These rep-
resentations result from the proposed examination of the unitary limit in nuclear
physics via the energies and widths of those fluctuations.

2 Unitary Limit in Systems of Cold Atoms

One starts from the exhaustion of the unitarity bound in the cross-section of
a scattering problem. In what follows, the discussion is restricted to s-wave
scattering. The parameter that controls the deviation from the unitarity bound
is the generalized scattering length a(k) as defined by Bethe [16] through the
effective range (r∗) expansion

k cot δ(k) =
1

a(k)
=

1

a
− 1

2
k2r∗ + · · · . (1)

The scattering length a originates by the approximation of the phase shifts δ(k) ∼
k(r− a) for k → 0. It shows the effect of the scattering on the wavefunction by
controlling its intercept with the horizontal axis of the radial distance r between
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the scattering particles. However, given the effective range r∗ for the particles’
interaction, it is the condition 1/a(k) = 0 on the generalized scattering length
that defines a resonance at the scattering amplitude [16]. At very low kinetic
energies, kr∗ � 1, that resonance condition implies an infinite value for the
scattering length, i.e. a → ∞. The latter amounts to maximize the interaction
strength between two particles, g = 4πa~2/m with m the mass of each particle,
i.e., it reflects a strong coupling limit. The unitary limit refers to the infinite value
of the scattering length a at low kinetic energy. A paradigm of its experimental
observation has been achieved in the cold and dilute atomic gases [9].

The open-closed channel crossing during an atom-atom collision is the un-
derlying mechanism that realizes the unitary limit. The open channel reflects a
scattering state of two cold atoms, while the closed channel is the bound state
of a diatomic molecule formed by these same cold atoms. Channels’ crossing
means the coincidence in the energy of two different channels. In the Feshbach
formalism for reactions, the open-closed channel crossing is achieved through
the resonating energy of the open channel with the energy of an intermediate
state of the closed channel. That resonating energy gives rise to a resonance that
manifests the intermediate state of the closed channel. In atomic and molecular
physics, these resonances are the celebrated Feshbach resonances [17]. How-
ever, they were initially introduced in compound nuclei [4].

The intermediate state of the Feshbach formalism affects the wavefunction’s
scattering length a. In general, for low k, the element of the scattering matrix is
expressed through the phase shifts as S0 = e2iδ(k) = e−2ika. In the presence
of an intermediate state of energy Em and width Γm, the quantity S0 takes the
form

S′0 = e2ika

(
1− i Γm

E − Em + iΓm/2

)
. (2)

From the perspective of nuclear physics [4], Eq. (2) generates the scattering ma-
trix element S′0 = S0SR, with SR = 1−iΓm/ (E − Em + iΓm/2) a fluctuating
part that fluctuates rather rapidly with the energy by the resonating energies Em
and widths Γm. Now, like in atomic and molecular physics [17], one identi-
fies the effect of that fluctuating part in the emergence of an effective scattering
length aeff = a+ a′, with

e2ika′ = 1− i Γm

E − Em + iΓm

2

,

aeff = a+
1

2k
tan−1

(
Γm(E − Em)

(E − Em)2 +
Γ2
m

4

)
.

(3)

The effective scattering length goes to infinity at the resonating energies E =
Em of the open channel with the intermediate states. Therefore, a Feshbach res-
onance maximizes the scattering length. Experimentally in ultracold atoms, an
external magnetic field tunes the energy of the channels to achieve their crossing
that generates the Feshbach resonance.
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3 O(6)O(6)O(6) Limit of the IBM

The Schrödinger equation of the O(6) limit of the IBM [7] reads

− ~2

2M

(
1

ρ5

∂

∂ρ
ρ5 ∂

∂ρ
− σ(σ + 4)

ρ2

)
Φ(ρ) +

1

2
Mω2ρ2Φ(ρ) =

=
(
Nb +

6

2

)
~ωΦ(ρ). (4)

It is realized in the six dimensional space (d = 6) of the s and d bosons [7].
The boson number radius is ρ =

√
β2 + q2

0 . β is the quadrupole deformation of
the nuclear surface defined by β2 =

∑5
i=1 q

2
i . The five quadrupole coordinates

qi define the five dimensional quadrupole plane where the d boson lives. The s
boson coordinate q0 is a sixth transversal coordinate to this plane. The numerator
of the centrifugal term is the eigenvalues σ(σ+ 4) of the angular wavefunctions
that span the irreducible representations of the O(6) group.

The radial solutions read

Φ(ρ) =
F Jσ (ρ)

ρ5/2
, F Jσ (ρ) =

ρσ

aσho
Lσ+2
J

( ρ2

a2
ho

)
e−ρ

2/2a2ho , (5)

with eigenvalues

E(Nb) =
(
σ + 2J +

6

2

)
~ω. (6)

The oscillator length is aho =
√
~/Mω, and Lσ+2

J (ρ2/a2
ho) is the associated

Laguerre polynomial. The number of bosons obeys the relation Nb = σ + 2J
with J to classify the representations for a specific value of Nb.

4 Algebraic Correspondences between the IBM and Systems of
Cold Atoms

Werner and Castin [18] introduced mappings between zero-energy states and
trapped states widely used in cold atoms. A trapped state is merely a quantized
state of a harmonic oscillator. One opens the walls of the trap by reaching the
zero-frequency limit ω = 0 in the harmonic oscillator and obtains the zero-
energy state. Werner-Castin mappings were introduced in the solutions of the
Schrödinger equation for N trapped cold atoms or particles in general. They pre-
serve the unitary limit and are realized through the generators of the SO(2, 1)
group in an isomorphic realization to the generators of the conformal group in
one dimension - time. An algebraic correspondence for those mappings is es-
tablished with the simplest form of the O(6) limit of the IBM [15]. In other
words, the Werner-Castin mappings [18] correspond to certain relations in the
O(6) limit of the IBM under the appropriate algebraic replacements. By this pro-
cess, one introduces the one-dimensional conformal group in the IBM and writes
down the wavefunction for the corresponding zero-energy state which contains
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a scaling exponent. The scaling exponent arises out of the invariant quantity of
dilatation (scale) transformations of the boson number radius ρ. The algebraic
correspondence determines that invariant quantity to be the O(6) quantum num-
ber σ and the scaling exponent to be the boson number Nb = σ + 2J [15].
Table 1 summarizes the main replacements/relations of this correspondence.

Table 1. Algebraic correspondences between the Schrödinger equation ofN = 2 trapped
atoms with the IBM O(6) limit. r1,2 is each atom’s radial distance from the trap’s center,
and l1,2 are their angular momenta. L±, L0 are the SO(2, 1) generators [15].

N = 2 hyperspherical O(6) IBM

radial variable R =
√
r21 + r22 boson number radius ρ

dilatation eigenvalue λ = l1 + l2 quantum number σ

energy (λ+ 2q + 6/2)~ω (Nb + 6/2)~ω, Nb = σ + 2J

zero energy state ψ0
λ = Rλ+2q ψ0

σ = ρNb

Werner-Castin mapping |F qλ〉 = Lq+e
−R2/2a2ho |ψ0

λ〉 |F Jσ 〉 = LJ+e
−ρ2/2a2ho |ψ0

σ〉

By this correspondence one introduces the SO(2, 1) group in the Schrödinger
equation (5). This group is isomorphic to the conformal group in one dimen-
sion [19] in which one deals with three generators that obey the commutation
relations

[H,D] = −2iH, [K,D] = 2iK, [K,H] = i~2ω2D. (7)

These are the free space Hamiltonian H , the dilatation operator D, and the spe-
cial conformal operator K and read

H =

5∑
i=0

− ~2

2M
∂2
i , K =

5∑
i=0

1

2
Mω2q2

i ,

D =

5∑
j=0

1

2i
(∂jqj + qj∂j) =

6

2i
− iρ∂ρ.

(8)

The commutation relations of the SO(2, 1) group are closed by three generators
L1, L2, L0,

2L1 =
1

~ω
(H −K), 2L2 = D, 2L0 =

1

~ω
(H +K). (9)

Ladder operators are defined by the relation L± = 2(L1 ± iL2) which gives

L± = ±iD +
1

~ω
(H −K), (10)
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and in terms of bosons read

L+ = −(d†d† + s†s†), L− = −(dd + ss). (11)

These ladder operators create the Werner-Castin mappings in the O(6) limit of
the IBM.

5 A+ 2nA+ 2nA+ 2n Compound Nucleus at Low Temperatures Like a Cold and
Dilute Atomic Gas

One examines the scattering of two slow neutrons (2n) with the ground state
of a heavy even-even target nucleus (A). The target nucleus is amenable to the
O(6) limit of the IBM and the two neutron separation energy S2n determines
the length scale of the scattering. In other words, the boson number radius ρ is
measured in units of the harmonic oscillator length aho = ~/

√
MS2n where M

is the neutron mass. In that case, one writes down the radial distance between
the 2n and the IBM state in the form of R − ρ ≡ r and the corresponding
wavenumber as kr.

Channel states are restricted to scalar angular momentum couplings of the
form Ψ(r, ρ) =

∑
n Ψn(r)Φn(ρ) where Ψn(r) is the 2n wavefunction, and

Φn(ρ) is the IBM wavefunction. The scattering occurs at the cold limit, i.e., at
a much lower kinetic energy of the 2n concerning the target’s S2n. The open
channel is the n = 0, where the target contains Nb bosons, while closed channel
states with the target in higher boson numbers Nb + 1, 2 . . . are those for n > 0.
These channel states form the Hilbert space of the IBM-compound Hamiltonian

Hc = H(r) +H(ρ) +H(ρ, r). (12)

H(r) is the Hamiltonian for the relative kinetic energy of the 2n with respect
to the target A and the interaction between the two neutrons. H(ρ) is the IBM
Hamiltonian for the target, and H(ρ, r) is the 2n-IBM state interaction term. To
investigate the unitary limit of Hc, the interaction terms are specified in anal-
ogy with the interactions and the external magnetic field governing the vicinity
of Feshbach resonances in cold and dilute atomic gases. There, when the for-
mation of diatomic molecules reaches the unitary limit, the atom-atom unitary
interaction induces a molecule-molecule unitary interaction [20]. In Hc, that
means one introduces a unitary interaction for the incident neutrons themselves
(atom-atom) plus a unitary interaction for the 2n-IBM state coupling (molecule-
molecule). The dilute character of the target’s valence space concerning the
short range of the strong interaction and the cold 2n rationalizes the analogy.
Accordingly, a 2n-IBM state scattering length ar is introduced through the cor-
responding effective range expansion as shown in Table 2.
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One has the neutron-neutron scattering length a and the pair-IBM state scat-
tering length ar and the corresponding unitary interactions are

4πa~2

M
δ(r1 − r2)→ lim

r1→r2
Ψ0(r) =

C

r1 − r2
− 1

a
,

4π3ar~2

M
δ(r)→ lim

r→0
Ψ0(r, ρ) = Φ0(ρ)

(C
r4
− 1

a4
r

)
.

(13)

These boundary conditions apply to the 2n scattering wavefunction Ψ0(r), and
to the channel wavefunction Ψ0(r, ρ). They replace the two unitary interactions,
respectively. The full IBM-compound Hamiltonian now reads

Hc = − ~2

2M

( 1

r5

∂

∂r
r5 ∂

∂r
− λ(λ+ 4)

r2

)
+H(ρ) + s† + s. (14)

The s† + s term changes target states by one s boson. It is the analog of the
magnetic field tuning to achieve the open-closed channel crossing. The effective
range of the 2n-IBM state interaction is the r∗ as seen in Table 2. That range is
determined experimentally by the width of the resonance that corresponds to the
channels’ crossing through the relation Γm = ~2kr/Mr∗.

Intermediate states of the Feshbach formalism are stationary states of the
A + 2n compound nucleus formed by the target plus two neutrons. They serve
as resonance states of energy εn with respect to the total energy E of the open
channel. The coupled channels equations read

(E −HPP )P |Ψ〉 = HPQQ|Ψ〉,
(E −HQQ)Q|Ψ〉 = HQPP |Ψ〉.

(15)

Table 2. The solutions of the open channel of the 2n-A scattering compared to those of
1n-A scattering. r1,2 is the radial distance of each neutron with respect to the heavy A
core.

scattering 1n-A 2n-A

radial variable r1 r = R− ρ, R2 = r21 + r22

wavenumber k1 kr

scattering wavefunction Ψ0(r1) = e−ik1r1

r1
− S0

eik1r1

r1
Ψ0(r) = e−ikrr

r5/2
− S0

eikrr

r5/2

effective range expansion 1
a1(k1)

= 1
a1
− 1

2
k21r

∗
1 + · · · 1

ar(kr)
= 1

ar
− 1

2
k2rr

∗ + · · ·

cross - section σ = 4π
k2+1/a21(k)

σ = (4π)3

k2r+1/a2r(k)
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The projection operators are the open channel P = |Φ0(ρ)〉〈Φ0(ρ)| and the set
of closed channels Q =

∑
n>0 |Φn(ρ)〉〈Φn(ρ)|. Open-open HPP and closed-

closed HQQ channel couplings are the unitary interactions and are included in
the boundary conditions (13). One examines the coupling of the open channel
(n = 0) of Nb bosons with the first closed channel (n = 1) of Nb + 1 bosons.
The coupling HPQ now is H10 = 〈Nb + 1|s† + s|Nb〉 =

√
Nb + 1 and the

reverse HQP is the same H01 = 〈Nb|s+ s†|Nb + 1〉 =
√
Nb + 1.

6 Results

The energy scale is normalized to the energy of the target’s ground state, i.e.,
to Nb bosons. The 2n s-wave (λ = 0) open channel solutions are presented in
sufficient detail in [15]. Table 2 summarizes the results for the 2n−A scattering
compared to 1n − A scattering. The main difference is the cubic power in the
solid angle factor of the cross-section and on the content of the wave numbers.

In absence of a resonance with the intermediate state, the s-wave phase
shifts of the 2n-IBM state scattering give the scattering matrix element S0 =
e2iδ(kr) = e−2ikrar . Now, one focuses on the first closed channel where the en-
ergy of the target (IBM state) is denoted by the capital E1 = (Nb + 1 + 6/2)~ω
and differs by S2n from the energy of the target in the open channel of Nb
bosons. The intermediate state Ψ1(r) of the 2n on that closed channel has, in
general, an unknown energy denoted by ε1. Its Schrödinger equation is obtained
by the second equation of (15) by setting H10 = 0. Then, the total energy E is
restricted to the energy ε1 of the intermediate state, and its equation reads

(Tr + E1)Ψ1(r) = ε1Ψ1(r). (16)

This equation supports a zero-energy state under the condition E1 = ε1. That
condition is satisfied when the energy of the intermediate state of the 2n in the
compoundA+2n nucleus coincides with the bound IBM state ofNb+1 bosons.
In other words, the unitarity condition is satisfied when the incident 2n are cap-
tured as one s boson. Unitarity manifests itself for that state by turning to the
effect on the scattering matrix element. The new element of the scattering matrix
reads S′0 = S0SR, with the fluctuating term SR = 1− iΓ1/(E − E1 + iΓ1/2).
Like in Eq. (3), that fluctuation generates an effective 2n-IBM state scatter-
ing length areff in the same sense with the emergence of the aeff in cold atoms.
Therefore, at resonance, the condition 1/ar(kr) = 0 applies and the areff affects
the 1/ar part of the effective range expansion. That resonance is measurable
through the fluctuation SR, which generates the compound-elastic cross-section

σce =
(4π)3

k2
r

Γ2
1

(E − E1)2 + (Γ1)2/4
. (17)

The exhaustion of the unitarity bound occurs when the resonance’s energy is
the two neutron separation energy E = E1 = S2n. The vicinity of the uni-
tary limit is quantified by the width Γ1 = b21(4M/~2)kr, with b21 = (Nb +
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1)|
∫
drΨ1(r)Ψ0(r)|2 [15]. The latter depends on the neutron mass, the kinetic

energy, and the boson number of the closed channel times a spectroscopic factor
for the intermediate state.

6.1 Representations of the one-dimensional conformal group in
intermediate states

By the action of the SO(2, 1) generators to the target states one obtains a whole
tower of states

(H +K)Lk+|Φn(ρ)〉 = (En + 2k~ω)Lk+|Φn(ρ)〉. (18)

One solution for the amplitude of the 2n, Ψ1(r) in the first closed channel cor-
responds to L+|Φ1(ρ)〉 as well as to L2

+|Φ1(ρ)〉 and consequently to the k-th
member of the tower. The intermediate state is coupled with a tower of equally
spaced states. Tower states are time-depended [21] emerging from the applica-
tion of the one-dimensional conformal transformation

τ(t) =

∫ t

0

dt′

λ2(t′)
, ρ̃ =

ρ

λ(t)
, λ(t) =

√
1 +

E2

~2
t2, (19)

to the time dependent target state Φ1(ρ, t)

Φ1(ρ, t) =
(
e−iEt/~ − εe−i(E+2~ω)t/~L+

+ ε∗e−i(E−2~ω)t/~L−

)
Φ1(ρ, 0). (20)

The time dependent scale factor λ(t) signals the incident wave of 2n that per-
turbs the boson number radius ρ→ ρ̃. Like in cold atoms, infinitesimal changes
in the scale factor λ(t) = 1 + δλ(t), δλ(t) � 1, cause an oscillation of the
boson number radius ρ(t) = (1 + δλ(t))ρ(0). By choosing the small parameter
ε = E(2+

1 )/S2n, the boson number radius oscillates due to the factor [18]

δλ(t) = εe−2i(S2n/~)t + εe2i(S2n/~)t +O(ε2). (21)

This is an example of how the modes of energy En ± 2kS2n couple with the
intermediate states of theA+2n compound nucleus and span the representations
of the one-dimensional conformal group.

7 Conclusions

This contribution briefly reviewed the first exploration of regularity patterns in
intermediate states of A + 2n compound nuclei [15]. The fluctuations of the
cross sections are the experimental means through which those regularities may
be tested. One should distinguish those states from doorway states in A + 1n
compound nuclei that exemplify the tremendous complexity of nuclear excita-
tion spectra in the continuum [5]. Doorway states emerge from a very restrictive
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coupling term in the continuum Shell Model. On the other hand, intermediate
states of A + 2n compound nuclei at unitarity arise out of the simple boson
coupling term s† + s. The regularity patterns under discussion are built on the
top of those boson states in the continuum and represent the one-dimensional
conformal group.

This work did not examine the conditions under which the particular capture
of the 2n as one boson occurs. Instead, this is the result of the investigation of
unitarity in the A + 2n compound nucleus, i.e., that the capture of the slowly
incident 2n as one boson maximizes the 2n-IBM state scattering length ar. The
accompanied phenomenological insight is sufficiently important. Namely, the
energies and the widths of the fluctuations of the cross-sections of A+ 2n com-
pound nuclei propose an experimental case study to examine the unitary limit in
nuclear physics.
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