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Abstract. In present work the calculations of characteristics of the low-energy
binary fission of actinide nuclei were presented. These values were obtained in
the framework of Langevin equation formalism, where quantities related with
nuclear surface were performed within Fourier shape parametrization. Using of
global deformation parameters approach for obtaining of the excitation energies
formed fission fragments at the neck breaking moment were performed. Making
an assumption that cooling of primary fragments passes via neutron evaporation
helped to build the secondary fragments mass yields. Comparative analysis of
mass distributions for neutron induced and spontaneous fission nuclei with Z in
region 92–98 showed good agreement with analogous experimental data.

1 Introduction

Despite the long history since the discovery of nuclear fission process, the prob-
lems associated with its proper description still remain unsolved. This work
is mostly focused on reproducing the fission dynamics of heavy nuclei with
obtaining quantitative characteristics of phenomena, such as mass, charge and
kinetic energy distributions (yields) of fragments (FMD, FCD and TKE cor-
respondently). A starting point of our calculations relies on determining the
potential energy surface falling from the last saddle point up to the scission con-
figurations using the framework of the well-known macroscopic-microscopic
approach. For the evolution of the nuclear surface along nuclear way to fission
one decompose its shape into the Fourier series where the linear combination pa-
rameters of the sine and cosine functions are treated, in general, as deformation
parameters. The stochastic formalism of multidimensional Langevin equations
allows to generate a series of possible trajectories of a nucleus toward fission. In
addition, taken into account temperature effects allow to describe fission events
with different excitation energy. Eventually, the model has the possibility to de-
termine the characteristics related to evaporation of light particles from already
formed fission fragments. This model has been tested to describe the fission of
the compound nucleus 236U and later on, extended to a set of even-even actinide
nuclei.
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2 Methods and Description

In this section it will be discussed the way of constructing of the statistical model
of the fission process, where one discusses the way of walking on the multi-
dimensional potential energy surface (PES) obeying classical laws of motion,
which will be discussed in more details in the following. First of all, let us de-
fine the mentioned potential energy Ecoll of a nucleus using well known since a
few decades macroscopic-microscopic model:

Ecoll = Emacro + Emicro = ELSD + Eshell + Epair, (1)

where Emacro is calculated in the framework of the liquid drop model, in our
case the Lublin-Strasbourg Drop (LSD) [1] which effectively reproduces exper-
imental masses and fission barrier heights throughout the periodic table. The
microscopic part Emicro describes the shell and pairing interaction effects. The
shell correction Eshell is obtained by subtracting the average energy Ẽ from the
sum of the single-particle (s.p.) energies ek of occupied orbitals which are the
eigenvalues of the mean-field Hamiltonian of the Yukawa-folded type [2]

Eshell =
∑
k

ek − Ẽ . (2)

The average energy is evaluated using the Strutinsky prescription of averaging a
discrete spectrum [3] with a 6th order correction polynomial. The pairing energy
correction in turn is determined similarly as in (2) for shell effects

Epair = EBCS −
∑
k

ek − Ẽpair (3)

except that the so-called average pairing term part of this interaction not taken
into account [4] in the liquid drop smooth energy part.

2.1 Shape parametrization

For describing the PES function introduced in the preceding subsection it is
necessary to know the surface geometry of the atomic nucleus. There are many
types of nuclear shape parametrisations available in nuclear physics theory: Cas-
sini ovaloids, spherical harmonics, Legendre polynomials, etc. However, in this
work we will use quite recent so-called Fourier parametrization [5], which ac-
cording to its name, represents nuclear shape in cylindrical coordinates (R, z, ϕ)
through the Fourier series decomposition:

ρ2s(u,q) = R2
0

∑
n=1

[
a2n cos

(
2n− 1

2
πu

)
+ a2n+1 sin (nπu)

]
, (4)

where the parameter u = (z − zsh)/z0 is dimensionless coordinate which mean-
ing is demonstrated in Figure 1, R0 = 1.2A1/3 is the radius of spherical drop
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and the Fourier coefficients ai (i = 2, 3, . . .) are related to the deformation pa-
rameters qi through the following transformations:

q2 =
a02
a2
− a2
a02

; q3 = a3; q4 = a4 +

√
(q2/9)2 + q04

2
. (5)

These coordinates are related with the shape elongation in R0 radius unit, left-
right mass asymmetry of fission fragments, and the neck thickness.The remain-
ing coordinates, a2n or a2n+1, due to their weak influence on the PES [5,6], can
be neglected in this work.

Figure 1. An example of nuclear body shape obtained [5] via Fourier parametrization.

Also, it should be noted that our collective deformation mesh grid on which
all the above mentioned calculations have been performed can be characterized
by the following boundaries and corresponding mesh node steps:

q2 = [−0.6 (0.05) 2.35]

q3 = [−0.21(0.03) 0.21]

q4 = [−0.21(0.03) 0.21]

2.2 Shape evolution towards fission

In order to study the dynamics of fission of atomic nuclei, we use the formal-
ism [7] of the multidimensional system of Langevin equations, which determines
the the deformation of nuclear surface given in terms of generalized coordinates
qi (at this stage, they do not have to be identified with the above introduced
Fourier shape parameters). Such equation system is similar to the canonical sys-
tem of Hamilton equations if one neglects the collective friction and stochastic
forces and can be represented as follows:

dqi
dt

=
∑
j

[M−1]ijpj ,

dpi
dt

= − 1
2

∑
jk

∂[M−1]jk
∂qi

pjpk −
∑
jk

γij [M−1]jkpk −
∂F

∂qi
+Ri,

(6)
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where pi is the conjugated momentum to the coordinate qi, Mij and γij are
inertia and friction tensors, respectively, while F is the Helmholtz free energy
potentia of the compound fissile system

F (q) = Ecoll(q)− a(q)T 2 = Ecoll(q)− E∗(q) . (7)

Here a(q) is the density of energy levels of the compound nucleus determined
as written in [8]. The last term in the second equation of the system (6), Ri =∑
j gijΞj , is responsible for non-linearity, Ξ is the time-dependent function

Ξ(t) = ξ/
√
τ and the amplitude gij is related to the friction tensor and the

temperature of the system T according [7] to the fluctuation-dissipation theorem
known as the Einstein relation

Dij ≡
∑
k

gikgjk = γijT . (8)

Note that the ξ function is defined as a random Gaussian distribution with white
noise properties as ξ̄ = 0 and ξ̄2 = 2.

The inertia (mass) tensor in (6) is calculated within the framework of the
representation of the atomic nucleus as an incompressible and irrotational liquid,
using the Werner-Wheeler approximation, presented in [9]

Mij(q) = πρm

∫ zmax

zmin

ρ2s(z, q)

[
AiAj +

1

8
ρ2s(z,q)A′iA

′
j

]
dz, (9)

where ρm = M0/(
4
3R

3
0) is the mass density, and the coefficients Ai have the

form

Ai =
1

ρ2s(z,q)

∂

∂qi

∫ zmax

z

ρ2s(z
′,q)dz′. (10)

The coefficients A′i in (9) are defined similar to (10) way by replacing the partial
derivative operator of the coordinate qi on z. Following the assumptions of [9],
the authors of [10] continued to investigate viscosity properties of nuclear fluid
and as a result obtained an expression defining the friction tensor γij for one-
body case by means of the so-called “wall” formula

γwall
ij =

π

2
ρmv̄

∫ zmax

zmin

∂ρ2s
∂qi

∂ρ2s
∂qj

[
ρ2s +

1

4

(
∂ρ2s
∂z

)2
]
dz, (11)

where v̄ is the average internal velocity of nucleons in the nucleus, the value of
which is related to the Fermi velocity vF through v̄ = 3

4vF .

2.3 Boundary conditions

Before starting to calculate the Langevin trajectories, it is necessary to mention
the importance of the boundary conditions. The careful choice of the starting
point (qstart

2 , qstart
3 , qstart

4 ) and the corresponding conjugated momenta seems to
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be crucial. The starting configuration is chosen here as the one situated in the
vicinity of the last saddle point before scission in the PES. It is clear that from
there the system in question goes directly towards fission. In the case when the
trajectory goes back, i.e. actual value of elongation q2 < qstart

2 , such a trajectory
is considered as a non-physical one. So, for each trajectory at starting moment
zero has the same position and energy. At the next point in time, new position is
determined by using normal random function and amplitude determined by the
stiffness of the potential in the saddle (however in the case of high values, it is
limited by the distance between mesh nodes).

In this model we apply two major conditions for terminating of the nuclear
shape evolution during calculation of each trajectory. The first is reaching a
certain value of the neck radius Rneck, which is usually admitted to be close
to 1.5 fm. The second is achieving the upper limit of the q2 coordinate,i.e.
q2 = 2.35 since in this configuration the system breaks up anyway due to the
domination of Coulomb interaction over the nuclear (surface term in the LSD
formula) one. Note that in the case of reaching by a trajectory the limit at
other than q2 coordinates, a kind of “wall reflection” procedure is used, i.e. one
changes the sign of the corresponding conjugate momentum p.

3 Results and Discussion

One can demonstrate that the above developed model has the ability to repro-
duce in a reasonable way FMD’s and TKE’s for trajectory number being rela-
tively small as for a stochastic approach. To get a satisfactory convergence in
the reproduction of the above fission observables one typically simulates about
Ntraj = 5 × 104 events. Determination of the exit point of each trajectory gives
unambiguously the fragmentation of a nucleus and kinetic energies of fission
fragments in a single fission act. The full set of Ntraj such single characteristics
results with a distribution as the one presented on Figure 2.

Figure 2. Primary FMD, FCD and TKE of the neutron induced fission 235U (red curve),
N and • are analogous FMD and TKE evaluated from experimental data [12] and [13].
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3.1 Temperature dependences

From Figure 2 it can be seen that there is a significant difference between cal-
culated and experimental data. This divergence can be attributed to the incom-
plete description of the presented “benchmark” as the temperature effects are
not taken into account. First of all, it affects the microscopic energy term Emic
(2) of the collective potential (1). As the temperature rises the shell and pair-
ing interaction are getting weaker and a nucleus becomes closer to a liquid
drop. As shown in [8] this effect can be described on average by introducing
a temperature-dependent multiplier in the form of a Fermi function of tempera-
ture as follows:

Emic(q, T ) = ctemp(T )Emic(q, T = 0) =
Emic(q, T = 0)

1 + e(1.4−T )/0.25
. (12)

The results of the above modification is demonstrated in Figure 3, where one
can observe the changes of the FMD with initial excitation energy, defining the
initial temperature of the system.

Figure 3. Primary FMD’s for 236U obtained with excitation energies close to 6 MeV (a),
20 MeV (b), 35 MeV (c), 60 MeV (d) with (red) or without using (violet) coefficient (2).

Clearly, for low excitation energies, the shell effects remain predominant
while the intrinsic friction force has than to stay small and starts growing with
increasing temperature. According to the result presented in [14] we can, in
addition, introduce a temperature-dependent coefficient for the friction tensor

γmic
ij = cγ(T )γwall

ij =
0.7γwall

ij

1 + e(0.7−T )/0.25
. (13)

Comparing the results presented in Figure 4 one notice that the results of
multiplication the friction tensor by temperature on constant values and tem-
perature dependent factor (13) are noticeably different. Using the latter, one
removes the appearance of events in symmetric fission channel, enchanting the
symmetric one, which should not appear on thermal induced fission of 235U.
Moreover, already for higher excitation energies around 20 MeV (see second
row of Figure 4), the usage of cγ(T) factor results with the closest to the avail-
able [13] experimental data. Note an interesting behaviour of the distribution (d)
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Figure 4. Primary FMD’s for induced fission of 235U by thermal (a-d) and 14.8 MeV
(e-g) neutrons, where friction tensors are multiplied by factors 0.5 (a. e), 1 (b, f), 2 (c, h)
and temperature-dependent function cγ(T) (d, g).

shown in Figure 5. At low excitation energy and hence temperature and diffu-
sion tensor Dij (8), the surface configurations associated with symmetric fission
practically disappear. However, the cost of this approach is the rapid decline in
the region close to the symmetric fission region and formation of high peaks,
which is not observed for the more excited states.

Figure 5. Comparison of primary FMD’s with (blue line) and without (red line) usage
of T ∗ for fission of compound nucleus 236U at 6(a), 20(b) and 35(c) MeV of excitation
energy.

It is, however, necessary to realize that the notion of temperature in a clas-
sical sense does not fully apply in the quantum mechanical world, particularly
when a system of finite number of a several tens to few hundred particles stays
in its stable low-energy state, performing zero-point vibrations. This primarily
indicates that the diffusion tensor (8), built on the basis of the principles of clas-
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sical statistical physics has to be redfined so that the fact of the zero-point motion
is, at least, effectively considered. It seems that the optimal solution of this prob-
lem is to redefine the temperature T onto effective temperature T ∗, which, even
in a cold nucleus has non-zero value, as it was introduced in [15]

T ∗ = E0 coth
E0

T
, (14)

whereE0 corresponds to the zero-point collective vibrations energy of nucleons,
which has value 1 MeV.

The use of the effective temperature (14) improves FMD and leads to a good
agreement with corresponding experimental distributions. This was also tested
not only on the well-studied isotope 236U, but also for several other nucleus-
actinides undergoing induced or spontaneous fission. The results of the calcula-
tions for these isotopes are presented in Figure 6.

Figure 6. Primary FMD’s for induced (N) and spontaneous (+) fission of nuclei-
actinides taken from EXFOR database.
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3.2 Particle emission

One has to notice that some FMD’s in selected nuclei are measured after the
emission of light particles, so they have to be compared with so called secondary
FMD. To obtain such distributions, it is necessary to take into account the emis-
sion of light particles, e.g. neutrons, protons, and α-particles from formed pri-
mary fission fragments. Within the low-energy fission process the overwhelming
majority of particles emitted from fragments are neutrons for which the relax-
ation time of transition, according to the Kramers formula [7] can be taken to
infinity. One can also assume that the energy released as a result rearrange-
ment of the intrinsic structure of nucleus, it could be possible to postulate that
temperature of the system upon breakup and already formed fragments are iden-
tical, i.e. E∗f = afT

2. Another component of the excitation energy of fission
fragments is the difference between the potential energy of the actual fragment
deformation and its ground state, admitted in a first approximation as of spheri-
cal shape. These assumptions significantly simplify the calculation of secondary
yields. Then the total excitation energy of fragment E∗totf with the absence of
shell and pairing energy corrections can be written as

E∗totf = ∆ELSD(Zf , Af ) + afT
2. (15)

In that above, the deformations of both fragments were described using the so
called global deformation parameter, introduced first in the work of Mayers
and Swiatecki [17], where all surface coefficients of the liquid droplet model
were represented through a series expansion of this single parameter. However,
the accuracy of describing the potential energy within this method may not be
satisfactory but for mentioned number trajectories it seems to be optimal.

With the above assumption, the maximum energy available for a neutron to
be evaporated can be given as

εmax
n = MMf

+ E∗totf −MDf
−Mn , (16)

where symbols M denotes mass excesses of fragments of mother and daughter
nuclei, respectively taken from tables whereas Mn is mass of a free neutron. If
εmax
n has positive value the energy widths can be determined by the Weisskopf

type formula [16]:

Γn(εmax
n ) =

2µ

(π~)2%M (E∗M )

∫ εmax
n

0

σinv(ε)ε%D(E∗D)dε . (17)

In (17) σinv(ε) is the inverse neutron cross section estimated within the phe-
nomenological formula

σinv(ε) = π
(

1.7A
1/3
f

)2 [
0.76 + 1.93A

−1/3
f +

1.66A
−2/3
f − 0.05

ε

]
(18)
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and %i is the density of levels estimated in [8] through the expression

%M (E∗f ) =

√
π e2
√
aE∗

f

12 a1/4E∗f
5/4

. (19)

Determining the partial widths Γn and applying a Monte-Carlo type averaging,
the energy εn taken away by a neutron were calculated. Neutrons can potentially
be evaporated until the residual energy εmax

n+1 = εmax
n −εn is positive. The results

of above outlined calculations combined with the data shown on Figure 6 lead to
the secondary FMD’s, which are presented in Figure 7. An excellent similarity
with experimental data can be noticed.

Figure 7. Secondary FMD’s for induced (N) and spontaneous (+) fission of nuclei-
actinides .

4 Conclusion

Within this work we demonstrate a power of the model for describing the low-
energy fission of compound actinide nuclei based on the multidimensional sys-
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tem of Langevin equations, where nuclear shapes are generated through a rela-
tively new and well performed Fourier parametrization. The model is capable to
determine mass, charge and kinetic energy distributions with or without temper-
ature effects. The quality of obtained results is confirmed by reasonably good
agreement of the primary FMD with experimental data. Taking into consider-
ation the Master equation based on the Weisskopf formalism which describes
the energies and emission probabilities of light particles (in particular, neutrons)
allows us to approach closer to the experimental values.
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