
NUCLEAR THEORY, Vol. 39 (2022)
eds. M. Gaidarov, N. Minkov, Heron Press, Sofia

The Effect of Temperature on the Tidal
Deformability of Neutron Stars

A. Kanakis-Pegios, P.S. Koliogiannis, Ch.C. Moustakidis

Department of Theoretical Physics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

Abstract. The recent detections of gravitational waves, which originated from
binary neutron star mergers, offer a unique tool for studying the high-density re-
gion of dense nuclear matter. The role of temperature during the inspiral phase
of a binary neutron star system is an open possibility, given the fact that there is
not at this time evidence for its absence (zero temperature). Moreover, some the-
oretical studies suggest the existence of temperature, about a few MeV, during
the last orbits before the merger. According to theory, friction may be developed
in the star leading to the conversion of mechanical energy into heat. This effect
might be detectable before the merger. In this work, our main purpose is to
study the role of temperature on the tidal deformability of neutron stars, during
the final stages of the inspiral phase. In our study, we used a variety of hot equa-
tions of state (isothermal and adiabatic) of various nuclear models. We found
that for values of temperature below 1 MeV the tidal deformability as a relation
to neutron star mass remains insensitive, though its ingredients (e.g. tidal Love
number k2) are affected. Regarding the adiabatic case, the thermal effect is un-
apparent up to S = 0.2kB . This surprising behavior of tidal deformability is
analyzed further.

1 Introduction

The detection of gravitational waves originated from binary black holes, binary
neutron star and black hole-neutron star systems consists a very informative tool
for physics [1, 2]. Especially, the entire process of a binary neutron star system
is of great interest beacause it offers usefull insights on the properties of both
cold and hot nuclear matter. In our study (for more details see Ref. [3]) we
combined theoretical predictions and observational constraints through the tidal
deformability [4–11].

According to theoretical statements, the temperature of a neutron star before
the merger could be a few MeV [12–16]. Arras and Weinberg [17] suggested
a main mechanism for the conversion of the mechanical energy into heat in the
interior of a neutron star. Moreover, Meszaros and Rees [12] noticed that at the
late phase of the inspiral of a coalescing binary neutron star system, the tidal
effects can lead to a heat. Other studies found similar results [13, 14], while a
relevant discussion has been given recently [15, 16].
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Various studies suggested the presence of tidal heating effects, regardless
the source that causes it [18–20]. Additionally, the meltdown of the crust during
the inspiral phase has been studied in Ref. [21].Moreover, an inclusive study
on the heat blanketing envelopes of neutron stars has been given in Ref. [22].
In general, the important role of the viscosity regarding neutron stars has been
arised, affecting the heating of a a neutron star in an inspraling binary neutron
star system. The predictions for the amount of heating focus in the following
interval T = 0.01−10 MeV. The quantity of tidal deformability is very sensitive
to the applied equation of state (EoS) of neutron stars. To be more specific, it
depends on the tidal Love number k2 and the star’s radius R. Therefore, the
study of the temperature effect in the tidal deformabiliy is of great interest, since
the latter can be detected and constrained from the gravitational waves point of
view.

The main idea that motivated our work was the study at which level the
temperature affects the tidal deformability of a neutron star, during the inspiral
phase of a binary neutron star system, just before the merger. In our study,
we focused on the case of isothermal matter in the interior of neutron stars,
employing various sets of EoSs, for temperatures in the range T = 0.01 −
1 MeV [23–27]. Details about the construction of hot EoSs can be found in
Refs. [16, 28–34].

The fact that up until now there are no theoretical studies about the thermal
effects on tidal deformability, led us to this study. The important role of the tidal
deformability, as it connects the microscopic quantities of dense nuclear matter
to the macroscopic quantities of neutron stars, emphasize this kind of study.

We notice that the study of the isothermal equilibrium of the star is not the
most realistic. However, as a first order approach is more realisting than the cold
star consideration. At the range of temperature that this study concentrated, the
structure of the core of neutron stars is not affected too much. On the other hand,
the crust is much more sensitive to the thermal effects. Nevertheless, in the mass
range that is mainly measured from gravitational waves (1.2–1.6M�), the radius
and therefore the tidal deformability, are quite sensitive to the structure and size
of the crust. Furthermore, we extended our study to isentropic (adiabatic) EoSs
for entropy S < 1, considering the neutron star to be in an adiabatic equilibrium.

The paper is organized as follows: In Section 2 we present the warm EoSs,
where in Section 3, the basic theoretical backgound related to the tidal deforma-
bility is provided. The results, as well as their discussion, are explained in detail
in Section 4. Finally, Section 5 contains the conclusions of the present work.

2 Warm Neutron Star Matter

The EoSs for the interior of neutron stars at finite temperature, as well as en-
tropy per baryon, use the study of Koliogiannis and Moustakidis [27], where
the data for the energy per particle for the symmetric nuclear matter and pure
neutron matter, regarding the APR-1 EoS [35], and the momentum-dependent
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interaction model are employed. To be more specific, the aforementioned pa-
rameterization is applied for the construction of three isothermal EoSs with
T = [0.01, 0.1, 1] MeV in a beta equilibrium state, and three isentropic EoSs
with S = [0.1, 0.2, 0.5] and proton fraction Yp = 0.2.

2.1 Core of neutron stars

By taking into consideration the absence of neutrinos in adiabatic EoSs (to sim-
ulate the increment of temperature due to merger), in both profiles, isothermal
and adiabatic, the exact relation for the chemical potentials µi, i = {e, p, n} is

µe = µn − µp = 4I(n, T ) [F (n, T, I = 1)− F (n, T, I = 0)] , (1)

where F (n, T, I) is the free energy per particle, and I = 1−2Yp is the asymme-
try parameter, assuming that the EoS contains protons, neutrons, and electrons.

We notice that the calculation of the proton fraction in isothermal profile
is possible through the beta equilibrium state, the Eq. (1), and the density of
electrons defined as

ne =
2

(2π)3

∫
d3k

1 + exp
(√

~2k2c2+m2
ec

4−µe

T

) . (2)

However, in adiabatic profile, we consider that the proton fraction is almost
constant. The energy density and pressure for the core of neutron stars, are
constructed as

E(n, T, I) = Eb(n, T, I) + Ee(n, T, I), (3)
P (n, T, I) = Pb(n, T, I) + Pe(n, T, I). (4)

Hence, Eqs. (3) and (4) constitute the ingredients for the EoSs in hot nuclear
matter.

2.2 Crust of neutron stars

In both isothermal and adiabatic profiles, the EoSs for the region of the crust
(nb < 0.08 fm−3) are given by the tabulated EoSs with finite temperature from
StellarCollapse 1. Especially, in isothermal profile, for the crust region we em-
ployed the EoSs of Lattimer and Swesty [23]. In all cases, the proton fraction of
the crust remains constant, Yp = [0.1, 0.2, 0.3], leading to a total of nine EoSs.
In adiabatic profile, for the crust region we employed the EoSs of Lattimer and
Swesty [23] and Shen et al. [24]. In this case, the proton fraction matches the
one of the core EoS, leading to a total of six EoSs.

Also, for reasons of completeness, we employed the EoSs of Lattimer and
Swesty [23], Shen et al. [24], Banik et al. [25], and Steiner et al. [26] at full
range. The Lattimer and Swesty [23] EoS is applied in T = [0.01, 0.1, 1, 5, 10]
MeV, while the remaining ones, are applied in T = [0.01, 0.1, 1] MeV. For the
total of 14 EoSs the proton fraction is constant, Yp = 0.1.

1https://www.stellarcollapse.org
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3 Tidal Deformability

The gravitational waves originated from the late phase of the inspral of a co-
alescing binary neutron star system are an important source for the detectors
and lead to the estimation of various properties [36–38]. In this phase, the tidal
effects are detectable [37].

We notice that the tidal Love number k2, which depends on the EoS, de-
scribes the response of a neutron star to the presence of the tidal field Eij [37].
The exact relation is the following:

Qij = −2

3
k2
R5

G
Eij ≡ −λEij , (5)

whereR is the neutron star radius and λ = 2R5k2/3G is the tidal deformability.
The tidal Love number k2 is given by [37, 38]

k2 =
8β5

5
(1− 2β)

2
[2− yR + (yR − 1)2β]

×
[

2β (6− 3yR + 3β(5yR − 8))

+ 4β3
(
13− 11yR + β(3yR − 2) + 2β2(1 + yR)

)
+ 3 (1− 2β)

2
[2− yR + 2β(yR − 1)] ln (1− 2β)

]−1

(6)

where β = GM/Rc2 is the compactness of a neutron star. The quantity yR is
determined by solving the following differential equation

r
dy(r)

dr
+ y2(r) + y(r)F (r) + r2Q(r) = 0, (7)

with the initial condition y(0) = 2 [39]. F (r) and Q(r) are functionals of the
energy density E(r), pressure P (r), and mass M(r) defined as [36]

F (r) =

[
1− 4πr2G

c4
(E(r)− P (r))

](
1− 2M(r)G

rc2

)−1

, (8)

and

r2Q(r) =
4πr2G

c4

[
5E(r) + 9P (r) +

E(r) + P (r)

∂P (r)/∂E(r)

]
×
(

1− 2M(r)G

rc2

)−1

− 6

(
1− 2M(r)G

rc2

)−1

− 4M2(r)G2

r2c4

(
1 +

4πr3P (r)

M(r)c2

)2(
1− 2M(r)G

rc2

)−2

. (9)

We notice that Eq. (7) has to be solved numerically and self consistently with the
Tolman–Oppenheimer–Volkoff (TOV) equations using the boundary conditions
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y(0) = 2, P (0) = Pc (Pc denotes the central pressure), and M(0) = 0 [36, 38].
The parameter yR along with the compactness β are the basic ingredients of the
tidal Love number k2.

The chirp mass Mc of a binary neutron star system is a well constrained
quantity by the detectors [1]. Its relation is given below

Mc =
(m1m2)3/5

(m1 +m2)1/5
= m1

q3/5

(1 + q)1/5
, (10)

where m1 is the mass of the heavier component star and m2 is the lighter’s one.
Therefore, the binary mass ratio q = m2/m1 lies within the range 0 ≤ q ≤ 1.

Moreover, another quantity that is well constrained is the effective tidal de-
formability Λ̃ which is given by [1]

Λ̃ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (11)

where Λi is the dimensionless deformability [1]

Λi =
2

3
k2

(
Ric

2

MiG

)5

≡ 2

3
k2β

−5
i , i = 1, 2. (12)

The effective tidal deformability Λ̃ is one of the main quantities that can be
inferred by the detection of the corresponding gravitation waves.

4 Results and Discussion

The EoSs that we used in our study regarding the temperature effect on tidal de-
formability are based on the work of Ref. [27]. To be more specific, we follow
the procedure of Ref. [27] for the construction of the core of the neutron star us-
ing the MDI+APR1 EoS, both for isothermal and adiabatic cases. We underline
that the EoSs in both profiles contain only protons, neutrons, and electrons. For
the crust region of isothermal neutron stars we employed the EoSs of Lattimer
and Swesty [23], while for the adiabatic ones, we used the EoSs of Lattimer and
Swesty [23] and Shen et al. [24]. In particular, in isothermal EoSs, the tabulated
finite temperature EoSs contain entries up to nb = 10−13 fm−3, which in this
case, we consider to be the surface of the star (nisosurf = 10−13 fm−3). On the
contrary, in the adiabatic EoSs, since the desirable entropy per baryon can be
found at various densities, we chose a common value, nb = 10−15 fm−3, and
extrapolate the EoSs for the crust until this value, i.e. log(nb) − log(E) and
log(nb) − log(P ). Therefore, the surface of the adiabatic EoSs is located at
nisesurf = 10−15 fm−3.

Specifically, we used the hot EoSs of Lattimer and Swesty [23], Shen et
al. [24], Banik et al. [25], and Steiner et al. [26]. Also, we employed the
MDI+APR1 EoS, which is suitable for the description of both cold and hot neu-
tron star matter [27, 40].
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Figure 1. Mass-radius dependence for a) the four different nuclear models for various
values of temperature and b) various values of temperature and proton fraction for the
MDI+APR1 EoS. In panel a), the blue family of curves corresponds to the Lattimer and
Swesty EoSs [23], the orange one to the Shen et al. EoSs [24], the red one to the Banik
et al. EoSs [25], and the green one to the Steiner et al. EoSs [26].

In Figure 1 we show the mass-radius relation for a) the four different nuclear
models and various values of temperature (the different line styles and family
colors indicate the different models, while the higher temperature corresponds
to the lighter color in each case; the same holds for the isothermal profile’s fig-
ures) and b) the MDI+APR1 EoS for different values of temperature and proton
fraction. In all cases the effect of the temperature is to increase the values of
the radius (for a fixed value of mass). This effect is more clear at very high val-
ues of temperature. In addition, the increase of the proton fraction on the warm
crust leads to the increase of the size of the neutron star, enhancing the effect of
temperature.

In Figure 2 we show the temperature and proton fraction effects on the tidal
parameters k2, yR, and λ for all nuclear models (top panel) and the MDI+APR1
EoS (bottom panel). As one can observe from the top panel of Figure 2, the
increase of the value of temperature leads to a decrease in k2, but simultane-
ously on an increase on yR, for all EoSs. We underline that the latter parameter
depends mostly on the neutron star structure. Although the radius and k2 are
sensitive to the temperature, the tidal deformability λ is not, as it is shown on
the top panel in Figure 2c. We notice there is not any clear theoretical explana-
tion for this kind of behavior. In the direction of exploring further this behavior,
we observed that for values of temperature up to T = 1 MeV the product
λ ∼ k2R5 holds.

Figure 2 (bottom panel) shows the effect of the proton fraction on λ. This
effect is too small and it is present mainly on the very low mass region (M .
1 M�), which is out of interest in our study. Despite the differentiation of the
EoSs in the panels a) and b) for the various values of proton fraction and tem-
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Figure 2. Thermal effects on the Love number k2, parameter yR, and individual tidal de-
formability λ for various values of temperature and for the four different nuclear models
(top panel) and the MDI+APR1 EoS under different values of proton fraction [27] (bot-
tom panel). The curves of diagrams b) and c) correspond to the legend of the diagram
a), for each panel (top and bottom) respectively. The color of the curves on the top panel
corresponds to those of the top panel of Figure 1.

perature, this behavior vanishes in the λ −M diagram, leading the EoSs to be
identical for high neutron star masses.

In Figure 3 we show the effect of the temperature and proton fraction on Λ̃
for the MDI+APR1 EoS, by using the binary neutron star mergers [1, 2]. In our
study we adopted the proposed values for the chirp mass Mc and the compo-
nent masses m1, m2 (under some minor modfication for the GW190425 event,
so that q ≤ 1) of both events. To be more specific, Figure 3a) corresponds to
the GW170817 event while Figure 3b) corresponds to the GW190425 one. Sim-
ilarly to the behavior of λ for a single neutrn star (see Figure 2c), all the EoSs
have an identical behavior, except from the cold case. Moreover, the effect of the
temperature is present mainly on the GW170817 event, which has lower compo-
nent masses. Hence, binary neutron star systems with a low value of chirp mass
Mc could be more suitable compared to binary neutron star systems with higher
Mc such as the GW190415.

Moving further on the study of thermal effects on tidal deformability, we
used a set of adiabatic EoSs under the consideration that the entropy per baryon
is fixed. In that scenario, the gradient of the temperature is regulated to ensure
constant entropy in the interior of the star. Especially, we employed two cases
of adiabatic EoSs (according to the crust approach) with S = [0.1, 0.2, 0.5].
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Figure 3. Thermal effects on Λ̃ as a function of the q for various values of temperature
and proton fraction for the MDI+APR1 EoS and for the a) GW170817 and b) GW190425
event, respectively [1, 2]. The black curve corresponds to the cold EoS. The gray shaded
regions indicate the measured upper limit on Λ̃ for each event.

Figure 4 represents the mass-radius diagram for the two EoSs and the three
specific values of the entropy that we used in our study. The effect of temperature
is insignificant for high neutron star masses. On the contrary, for lower masses,
especially in the range we are interested, around M = 1.4 M�, there is an
increase in the radius of the star as the temperature increases.
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Figure 4. Mass-radius diagram for different values of S (in units of kB) and for both
crust considerations. The blue (red) curves indicate the Shen et al. [24] (Lattimer and
Swesty [23]) crust approach, respectively.

Furthermore, in Figure 5 one can observe the effects of entropy on k2, yR,
and λ. In more detail, the thermal effects are negligible on both k2 and yR, and
consequently on λ. Specifically, the two set of EoSs lead to similar predictions
for each value of the entropy (independently of the EoS) and depend mainly on
the values of the entropy as displayed in Figure 5b).
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Figure 5. Entropy effects on tidal parameters, for both crust approaches. The blue (red)
curves indicate the Shen et al. [24] (Lattimer and Swesty [23]) crust consideration. The
curves of panels b) and c) correspond to the legend of the panel a).

5 Conclusions

According to our knowledge, up until now the thermal effects on the tidal de-
formability in the inspiral phase of a binary neutron star system have not been
studied. Various studies suggest the presence of temperature of about a few
MeV just before the merger. In our study, we explored how the temperature
affects the tidal deformability, for both a single neutron star and a binary neu-
tron star system, using the detections of binary neutron star mergers from the
gravitational-waves point of view. The main finding is that even if the effect of
temperature is important for k2 and yR parameters, this effect vanishes for the
tidal deformability λ, for values of temperature up to T < 1 MeV. This fact is
present regardless of the applied EoS. Therefore, it is very important to measure
accurately the neutron star radius, so that useful insights can be gained regard-
ing the temperature. In conclusion, we speculate that future detections of binary
neutron star mergers could offer more information regarding the open question
of the role of temperature.
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