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Abstract. In this work, the covariant density functional theory is used
to investigate the ground-state properties of the platinum isotopic chain.
The calculations are performed for a large number of even-even Pt iso-
topes using the density-dependent point-coupling and the density depen-
dent meson-exchange effective interactions. Several ground-state prop-
erties such as the binding energy, separation energy and quadrupole de-
formation are discussed and compared with available experimental data,
and with the predictions of some nuclear models such as the Relativistic
Mean Field (RMF) model with NL3∗ functional and the Hartree Fock
Bogoliubov (HFB) method with UNEDF0 Skyrme force. The shape
phase transition for Pt isotopic chain is also studied.

1 Introduction

Among the various nuclear Density functional theories (DFTs), the covariant
density functional theory (CDFT) [1–4] based on the energy density functionals
(EDFs) is very successful in describing the ground and excited states throughout
the chart of nuclei [5–7] as well as in the nuclear structure analysis [8–10]. In
Ref. [11], the bulk performance of some covariant energy density functionals on
some nuclear observables has been analyzed.

In this work, we are interested in the calculation and analysis of some ground-
state properties of even-even Pt isotopes, N = 82–160, within the framework
of the covariant density functional theory by using two functionals which pro-
vide a complete and an accurate description of different ground states and ex-
cited states over the whole nucleic chart [12–14], namely the density-dependent
point-coupling DD-PC1 [15] and the density-dependent meson-exchange DD-
ME2 [16], with the parameter sets listed in Table 1.

This paper is organized as follows: The CDFT and details of the numerical
calculations are presented in Section 2. Section 3 is devoted to present our results
and discussion. Finally, the conclusions of this study are presented in Section 4.
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Table 1. Parameters of the DD-ME2 and DD-PC1 functionals

Parameter DD-ME2 DD-PC1 Parameter DD-ME2 DD-PC1
m 939 939 dσ 0.4421 1.37235
mσ 550.1238 aω 1.3892 5.91946
mω 783.000 bω 0.9240 8.86370
mρ 763.000 cω 1.4620
gσ 10.5396 dω 0.4775 0.65835
gω 13.0189 aρ 0.5647
gρ 3.6836 bρ 1.83595
aσ 1.3881 -10.04616 dρ 0.64025
bσ 1.0943 -9.15042 δS -0.8149
cσ 1.7057 -6.42729

2 Theoretical Framework

Throughout this paper, two classes of covariant density functional models are
used: the density-dependent point-coupling (DD-PC) model and the density-
dependent meson-exchange (DD-ME) model. The first uses a zero-range inter-
action and has been fitted to nuclear matter data and for finite nuclei only to
binding energies of a large range of deformed nuclei; while the latter has a finite
interaction range and has been fitted to binding energies and radii of spherical
nuclei.

In the meson-exchange model, the nucleus is considered as a system of Dirac
nucleons which interact via the exchange of mesons with finite masses leading to
finite-range interactions [17,18]. The standard Lagrangian density with medium
dependence vertices that defines the meson-exchange model [19] is given by:

L = ψ̄ [γ(i∂ − gωω − gρ~ρ~τ − eA)−m− gσσ]ψ +
1

2
(∂σ)2 − 1

2
m2
σσ

2

− 1

4
ΩµνΩµν +

1

2
m2
ωω

2 − 1

4
~Rµν ~R

µν +
1

2
m2
ρ~ρ

2 − 1

4
FµνF

µν (1)

where m is the bare nucleon mass and ψ denotes the Dirac spinors. mρ, mσ and
mω are the masses of ρ meson, σ meson and ω meson, with the corresponding
coupling constants for the mesons to the nucleons as gρ, gσ and gω respectively,
and e is the charge of the proton.

The point-coupling model represents an alternative formulation of the self-
consistent relativistic mean-field framework [20–23]. The Lagrangian for the
DD-PC model [15, 24] is given by
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L = ψ̄ (iγ · ∂ −m)ψ − 1
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) (
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)
− eψ̄γ ·A (1− τ3)

2
ψ. (2)

Equation (2) contains the free-nucleon Lagrangian, the point coupling interac-
tion terms, and the coupling of the proton to the electromagnetic field, the deriva-
tive terms account for the leading effects of finite-range interaction which are
important in nuclei.

3 Results and Discussion

In this section, we present the numerical results of the ground-state properties
of 160−238Pt nuclei obtained in the framework of the CDFT by using the in-
teractions DD-ME2 [16] and DD-PC1 [15]. Our results are compared with the
available experimental data, the predictions of the RMF model with NL3∗ [18]
functional and with the results of HFB theory with UNEDF0 [25] Skyrme force
calculated by using the computer code HFBTHO v2.00d [26–29].

3.1 Binding energy

The total binding energies (BE) of ground states for platinum isotopes, 160−238Pt,
are presented in Figure 1 as a function of the neutron number N. The available
experimental data [30] as well as the predictions of the RMF(NL3∗) [18] and
HFB(UNEDF0) [25] theories are also shown for comparison.
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Figure 1. The total binding energies for even-even 166−238Pt isotopes.

It can be clearly seen from Figure 1 that the theoretical predictions reproduce
the experimental data accurately and, qualitatively, all curves show a similar
behavior.
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3.2 Two neutron separation energy (S2n)

The neutron separation energy is an important quantity in testing the validity
of a model and in investigating the nuclear shell structure. In this work, we
have calculated the two-neutron separation energies, S2n(N,Z) = BE(N,Z) -
BE(N − 2, Z), for Pt isotopes by using the density-dependent effective interac-
tions DD-PC1 and DD-ME2.

In Figure 2, we display the calculated S2n of even-even platinum isotopes,
as a function of the neutron number N , in comparison with the available experi-
mental data [30] and the predictions of RMF(NL3∗) [18] and HFB(UNEDF0) [25].

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

◆ ◆
◆

◆ ◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆
◆

◆
◆ ◆ ◆ ◆ ◆

◆ ◆
◆ ◆ ◆ ◆ ◆

◆ ◆
◆ ◆

◆
◆

◆ ◆ ◆ ◆

○ ○
○

○ ○

○
○

○
○

○
○

○

○

○

○
○

○
○

○ ○ ○
○

○ ○ ○ ○ ○ ○
○

○ ○ ○ ○ ○

○ ○ ○ ○ ○

▲
▲ ▲ ▲

▲
▲

▲

▲

▲

▲ ▲ ▲
▲

▲
▲ ▲ ▲

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲
▲ ▲ ▲

□
□

□ □
□

□
□

□
□

□
□

□
□

□ □
□

□

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

● Exp.

◆ DD-ME2

○ DD-PC1

▲ NL3*

□ UNEDF0

100 120 140 160
0

5

10

15

20

25

30

Neutron Number N

S
2
n
[M
e
V
]

Figure 2. The two-neutron separation energies, S2n, for Pt isotopes.

As one can see from Figure 2, the results of the two density-dependent mod-
els DD-ME2 and DD-PC1 as well as those of NL3∗ and UNEDF0 reproduce the
experimental data quite well except some small discrepancies which are mainly
due to the missing beyond mean field corrections [31]. S2n gradually decreases
with N , and a sharp drop is distinctly seen at N = 126 in both experimental and
theoretical curves, which corresponds to the closed shell at this magic neutron
number.

A more sensitive observable for locating the shell closure is δ2n = S2n(N,Z)−
S2n(N + 2, Z). Figure 3 shows δ2n as a function of the neutron number N . The
strong peaking in (δ2n) clearly seen atN = 126 further supports the shell closure
at this neutron magic number as shown in Figure 2 by two-neutron separation
energy (S2n).

3.3 Quadrupole deformation

The quadrupole deformation is also an important property for describing the
structure and shape of the nucleus.

In Figure 4, we show for every Pt isotope (covering the mass interval 160 6
A 6 204) the energy curves along the axial symmetry axis, as a function of
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Figure 3. δ2n for even-even 94−168Pt isotopes.

the deformation parameter, β, obtained within CDFT framework by using the
density-dependent effective interactions DD-ME2 and DD-PC1.

As we can see from Figure 4, the interaction DD-PC1 provides potential
energy curves which are extremely similar to the ones obtained with DD-ME2.
The deformations of the oblate and prolate minima are practically independent
of the force.

The lightest isotopes, 160−162Pt, exhibit spherical shape. The next isotope,
164Pt, starts to develop two shallow degenerate minima, oblate and prolate, that
correspond to a small value of β. The next isotope, 166Pt, starts to develop
a more pronounced prolate minimum. The 168−186Pt isotopes show a similar
structure, with a well-deformed prolate minimum, β ≈ 0.3, and an oblate local
minimum.

A transition from prolate to oblate shapes occurs smoothly between 188Pt
(prolate) and 190Pt (oblate). In 190−200Pt two minima appear, with the opposite
situation occurring in 168−186Pt. As the mass number increases, the two well-
deformed minima gradually disappear and we get a flat potential energy curve
at A = 202. At A = 204, we get a sharp single minimum, which confirms the
spherical shape at the magic neutron number N = 126.

These results are in good agreement with recent works [32–34]. However,
other calculations have different results that are not in agreement with ours such
as Ref. [35] which predicts that the shape transition in Pt isotopes within a
beyond-mean-field approach with the Skyrme SLy6 occurs at A = 186 to 188
instead of A = 188 to 190 in our calculations. In the same line, constrained
Hartree-Fock+ BCS calculations with the Skyrme forces Sk3, SGII, and SLy4
suggest a prolate to oblate shape transition at 182Pt [36]. Furthermore, triax-
ial D1M-Gogny calculations predict a smooth shape transition at A = 184 to
186 [37].
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Figure 4. The total energy curves for 160−204Pt as a function of the axial quadrupole
deformation parameter β2.
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Figure 5. Potential energy surfaces for 186−190Pt in the (β, γ) plane, obtained from a
CDFT calculations with the DD-ME2 parameter set. The color scale shown at the right
has the unit of MeV, and scaled such that the ground state has a zero MeV energy.

These differences between theoretical methods in predicting the exact loca-
tion of the shape transition are due, firstly, to the difference between the models
used and, secondly, to the fact that the shape transition is very sensitive to the
small details of the calculation because the shape transition occurs precisely
around the region where the energies of the competing shapes are practically
degenerate.

In Figure 5 we display the triaxial contour plots of 186−190Pt isotopes in the
(β, γ) plane. To study the dependency on γ, constrained triaxial calculations
were made to map the quadrupole deformation space defined by β2 and γ using
the effective interaction DD-ME2.

The constrained calculations are performed by imposing constraints on both
axial and triaxial mass quadrupole moments. The potential energy surface (PES)
study as a function of the quadrupole deformation parameter is performed by the
method of quadratic constraint [38] (see Ref. [39] for more details). Energies are
normalized with respect to the binding energy of the global minimum such that
the ground state has a zero MeV energy.

From this figure, we can notice that the location of the ground state mini-
mum moves from near prolate shape at 186Pt to near oblate shape at 190Pt. 188Pt
is slightly triaxial with its global minimum at (0.25, 10◦). Thus, the shape tran-
sition is smooth, and there are no sudden changes in the nuclear shape. These re-
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sults confirm those seen previously in Figure 4 and are in full agreement with the
results shown in Figure 5 of Ref. [33] obtained with Hartree-Fock-Bogoliubov
based on Gogny-D1S interaction.

4 Conclusion

In this work, we have studied the ground state properties of even-even platinum
isotopes, 160−238Pt, from the proton-rich side up to the neutron-rich one within
the framework of the covariant density functional theory, by using two of the
most recent functionals: The density-dependent point-coupling DD-PC1 and the
density-dependent meson-exchange DD-ME2. The bulk ground state properties
are quite well reproduced in our calculations and are in good agreement with the
experimental data. A strong shell closure is clearly seen at N = 126. The total
energy curves for 160−204Pt obtained in this work suggest a smooth prolate to
oblate shape transition at 188Pt.
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