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Abstract. A new alternative approach to calculate the ratio of the surface to
volume components of the nuclear symmetry energy is proposed in the frame-
work of the coherent density fluctuation model (CDFM). A new expression
(scheme II) for the ratio is derived consistently within the model. This expres-
sion appears in a form more direct and physically motivated than the expression
(scheme I) that was used in our previous works within the CDFM and avoids
preliminary assumptions and mathematical ambiguities in scheme I. The calcu-
lations are based on the Skyrme and Brueckner energy-density functionals for
nuclear matter and on nonrelativistic Brueckner-Hartree-Fock method with real-
istic Bonn B and Bonn CD nucleon-nucleon potentials. The approach is applied
to isotopic chains of Ni, Sn, and Pb nuclei using nuclear densities obtained in
self-consistent Hartree-Fock+BCS calculations with SLy4 Skyrme effective in-
teraction. The applicability of both schemes within the CDFM is demonstrated
by a comparison of the results with the available empirical data and with re-
sults of other theoretical studies of the considered quantities. Although in some
instances the results obtained for the studied ratio and the symmetry energy
components are rather close in both schemes, the new scheme II leads to more
realistic values that agree better with the empirical data and exhibits conceptual
and operational advantages.

1 Introduction

Measurements of nuclear structure characteristics including masses, densities,
and collective excitations have resolved some of the basic features of the equa-
tion of state (EOS) of nuclear matter. The EOS allows one to constrain the bulk
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and surface properties of the nuclear energy-density functionals (EDFs) quite
effectively via the symmetry energy and related properties. The latter are signif-
icant ingredients of the EOS and their study in both asymmetric nuclear matter
and finite nuclei are of particular importance.

While there is enough collected information for the key EOS parameters,
e.g., for the nuclear symmetry energy (NSE), the neutron pressure, and the asym-
metric compressibility, the volume and surface symmetry energies have been
poorly investigated till now. This concerns mostly the surface contribution to
the NSE and comes from the fact that many nucleons are present at around the
nuclear surface. For instance, the combined experiment at GANIL, where the
VAMOS spectrometer was coupled with the 4π INDRA detector to study the iso-
topic distributions produced in 40,48Ca+40,48Ca collisions at 35 MeV/nucleon,
allowed one to estimate the relative contribution of surface and volume terms to
the symmetry energy in the nuclear EOS [1]. The knowledge of this contribu-
tion and, especially, the relevance of the surface term are important to explore
to what extent one can learn about the density dependence of the symmetry en-
ergy in infinite nuclear matter (NM) from multifragmentation of finite nuclei and
from nuclear reaction dynamics.

The volume and surface contributions to the NSE and their ratio at zero tem-
perature were calculated in Ref. [2] within the CDFM (see, e.g., Refs. [3, 4])
using two EDFs, namely, the Brueckner and Skyrme ones. The obtained results
in the cases of Ni, Sn, and Pb isotopic chains were compared with results of
other theoretical methods and with those from approaches which used exper-
imental data on binding energies, excitation energies to isobaric analog states
(IAS), and neutron-skin thicknesses. An investigation of the thermal evolution
of the NSE components and their ratio for isotopes belonging to the same chains
around the double-magic nuclei performed in Ref. [5] has extended our previous
analysis of these nuclei for temperatures different from zero.

In the present paper (see also Ref. [6]) we suggest a new alternative ap-
proach to the one proposed in Refs. [2, 7] for calculation of the ratio between
the volume and surface components of the NSE within the CDFM in a more di-
rect and physically motivated way, namely to avoid the preliminary assumptions
and mathematical ambiguities in our previous scheme I. To achieve this goal, in
the new scheme II, we apply the general relation based on the Droplet Model
between the symmetry energy and its components to the building units (”fluc-
tons”) of the CDFM model, and we construct from them the ratio between the
NSE components for finite nuclei following the standard CDFM procedure. We
also search for the dependence of the results on several sets of nuclear potentials.
In the new approach we perform calculations for the symmetry energy compo-
nents SV (A) and SS(A) and their ratio for the same isotopes in Ni (A=74-84),
Sn (A=124-156), and Pb (A=202-214) chains considered before and compare
the obtained results with the previous ones (including SV (A), SS(A), and their
ratio κ) obtained by the procedure in Refs. [2, 7]. The applicability of our both
schemes within the CDFM is also demonstrated by a comparison of the results
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with the available empirical data and with results of other theoretical studies for
the considered quantities.

2 Theoretical Scheme

The symmetry energy S(A) is expressed by the volume SV (A) and modified
surface component SS(A) in the droplet model (see Ref. [8], where it is defined
as S∗s ):

S(A) =
SV (A)

1 +
SS(A)

SV (A)
A−1/3

=
SV (A)

1 + q(A)A−1/3
, (1)

where

q(A) ≡ SS(A)

SV (A)
. (2)

We note that in the present work we use Eq. (1) as a basic relation between the
symmetry energy S(A) and its volume SV (A) and surface SS(A) components.
The reason to use Eq. (1) in contrast to the relation in another approach used in,
e.g., Refs. [9–12], and also in our work [2], was discussed in detail in our previ-
ous work [7]. It is motivated by the necessity to have a correct behavior of the
denominator in Eq. (1) in the infinite nuclear matter limit. More precisely, in the
limit A → ∞ the ratio in Eq. (1) SS/SV → 0, so that [SS/SV ]A−1/3 → 0
and the symmetry energy in Eq. (1) has the correct limit S → SV . Con-
trary to this, in the approach of Refs. [9–12] in the limit A → ∞ the term
[SV (A)/SS(A)]A−1/3 is not well determined. The use of the latter approach
needs a condition to be imposed, namely the surface coefficient SS(A) to go to
zero more slowly than A−1/3 as A → ∞. This is the reason to use in our work
Eq. (1) instead of the relation in the approach in e.g., Refs. [9–12].

At very large A we may write the symmetry energy in the known form (see
Ref. [13]):

S(A) ' SV (A)− SS(A)

A1/3
, (3)

which follows from Eq. (1) for large A.
The relations of SV (A) and SS(A) with S(A) in terms of q(A) can be found

from Eqs. (1) and (2):

SV (A) = S(A)

[
1 +

q(A)

A1/3

]
, (4)

SS(A) = q(A)S(A)

[
1 +

q(A)

A1/3

]
. (5)

The following expression for the ratio of the volume to the surface symmetry
energy coefficients was given by Danielewicz [9] (see also Ref. [14]):

κ(A) =
SV (A)

SS(A)
=

3

r0

∫
dr
ρ(r)

ρ0

{
SNM (ρ0)

SNM [ρ(r)]
− 1

}
, (6)
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where SNM [ρ(r)] is the nuclear matter symmetry energy, ρ(r) is the half-infinite
nuclear matter density, ρ0 is the nuclear matter equilibrium density, and r0 is the
radius of the nuclear volume per nucleon. The latter two quantities are related
by

4πr30
3

=
1

ρ0
. (7)

In the present work we calculate the EOS parameters in finite nuclei, such as
the nuclear symmetry energy and its surface and volume components using the
CDFM. The model is based on the δ-function limit of the generator coordinate
method [4, 15], it is a natural extension of the Fermi-gas model and includes
nucleon-nucleon correlations of collective type. An important feature of the
CDFM is that it allows us to make the transition from nuclear matter quantities
to the corresponding ones in finite nuclei.

In our first scheme to calculate the ratio κ(A) we started from the expression
of Eq. (6) (see, e.g., [9,14]) making in it a preliminary assumption replacing the
density ρ(r) for the half-infinite nuclear matter in the integrand by the density
distribution of a finite nucleus, namely, by the expression in the CDFM:

ρ(r) =

∫ ∞
0

dx|F (x)|2ρ0(x)Θ(x− |r|), (8)

where
ρ0(x) =

3A

4πx3
(9)

and |F (x)|2 is the weight function. In the case of monotonically decreasing
local density (dρ/dr ≤ 0) the weight function |F (x)|2 can be obtained from a
known density (obtained theoretically or experimentally):

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

. (10)

The following expression for the nuclear symmetry energy in finite nuclei S(A)
can be obtained within the CDFM on the base of the infinite matter one SNM (ρ)
by weighting it with |F (x)|2:

S(A) =

∫ ∞
0

dx|F (x)|2SNM [ρ(x)]. (11)

Following the procedure whose details are given in our work [7], we obtain the
formula for κ(A) in the form:

κ(A) =
3

r0ρ0

∫ ∞
0

dx|F(x)|2ρ0(x)

∫ x

0

dr

{
SNM (ρ0)

SNM [ρ0(x)]
− 1

}
(12)

that leads finally to

κ(A) =
3

r0ρ0

∫ ∞
0

dx|F(x)|2xρ0(x)

{
SNM (ρ0)

SNM [ρ0(x)]
− 1

}
. (13)
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The right-hand side of Eq. (13) is an one-dimensional integral over x, the latter
being the radius of the “flucton” that is perpendicular to the nuclear surface. We
refer to the expression in Eq. (13) as scheme I, because this was the first equation
that we used for the numerical calculations of the results presented in [2, 7].

Here we would like to underline the main differences in the construction of
scheme II in comparison with the previous scheme I: i) we do not use the method
in Refs. [9, 14], and ii) we avoid the assumption concerning the replacement of
the density ρ(r) for the half-infinite nuclear matter by the density distribution of
a finite nucleus. A third and important reason to choose a new scheme is that
the integrand in Eq. (13) for κ in scheme I presents singularities for some of the
potentials (e.g., for the Brueckner one). Thus, the results for κ become extremely
sensitive to the choice of the integration interval, mainly to the value of the lower
limit of integration in Eq. (13). In the new scheme II we start from the general
relationship [Eq. (1)] between the NSE S and its components SV and SS . The
procedure of the derivation of q(A) for finite nuclei is as follows: i) we determine
the ratio q(x) = SS(x)/SV (x) for the “fluctons” of the CDFM from the basic
Eqs. (1) and (3), and ii) we construct q(A) within the CDFM rules weighting
q(x) by the weight function |F (x)|2. First, to construct q(x) = SS(x)/SV (x)
in the x-flucton we recall that the x-flucton is a sphere of nuclear matter of radius
x with density ρ0(x). This implies that inside each flucton we may apply Eq. (3)
in the form SS/SV ' (1− S/SV )A1/3, with A, the number of nucleons in the
flucton, given by (x/r0)3[ρ0(x)/ρ0] [see Eqs. (7) and (9)], and S the nuclear
matter symmetry energy in the flucton [SNM (ρ0(x))] with volume component
SV ' SNM (ρ0). This results in the following expression for q(x):

q(x) =
SS(x)

SV (x)
=

x

r0

[
ρ0(x)

ρ0

]1/3 [
1− SNM [ρ0(x)]

SNM (ρ0)

]
. (14)

Weighting q(x) by the function |F (x)|2 leads to the following relationship for
the ratio (2):

q(A) =

∫ ∞
0

dx|F (x)|2q(x)

=

∫ ∞
0

dx|F (x)|2 x
r0

[
ρ0(x)

ρ0

]1/3 [
1− SNM [ρ0(x)]

SNM (ρ0)

]
. (15)

We refer to the expression in Eq. (15) as scheme II. Here we would like to note
the following: i) the expression Eq. (14) for a flucton is obtained in a direct and
natural way starting from the known formula Eq. (3) that follows from the gen-
eral relationship Eq. (1) at large A; ii) Eq. (15) is obtained without preliminary
assumptions that were imposed to obtain Eq. (13) in scheme I and is free from
singularities; iii) as a result of i) and ii) the calculated quantity 1/q = SV /SS

that follows from Eq. (15) is not equal to the previously calculated quantity κ
following Eq. (13). We note that both quantities are obtained within different
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schemes, though both are within the framework of the CDFM. Of course, the
values of the results for 1/q(A) coming from Eq. (15) and κ(A) [Eq. (13)] can
be compared and this is done in the next section.

3 Results and Discussion

We show in Figure 1 the results for the ratio 1/q = SV /SS as a function of the
mass number A for the isotopic chains of Ni, Sn, and Pb with SLy4 force. In
Table 1 the values of this ratio obtained within the new scheme are compared
with the values of κ [Eq. (13)] calculated from our previous scheme within the
CDFM [2, 7]. We would like to emphasize that this comparison is between
quantities obtained in two different CDFM schemes and it can serve basically
to show the influence and the importance of the preliminary assumptions and
shortcomings made of scheme I and the advantage of the new scheme that is
free from them.

In general, the values of 1/q within the new CDFM scheme calculated using
the Skyrme EDF for the isotopic chains of Ni, Sn, and Pb are between 1.70 and
2.40. This range of values is similar to the estimations for κ(A) [Eq. (13)] of
Danielewicz et al. obtained from a wide range of available data on the binding
energies [11], of Steiner et al. [8], and from a fit to other nuclear properties,
such as the excitation energies to IAS and skins [10] 2.6 ≤ κ ≤ 3.0 and from
masses and skins [10] 2.0 ≤ κ ≤ 2.8. The values of 1/q obtained using the
Brueckner EDF for the Ni isotopic chain with SLy4 force are in agreement partly
with that obtained in Ref. [14] by Dieperink and Van Isacker from the analyses
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Figure 1. The quantity 1/q = SV /SS [following from Eq. (15)] as a function of A
for the isotopic chains of Ni, Sn, and Pb obtained using Brueckner EDF (dashed line),
Skyrme EDF (solid line) and BHF method with Bonn B (dotted line) and Bonn CD (dash-
dotted line) potentials from Refs. [16, 17]. The weight function |F (x)|2 [Eq. (10)] used
in the calculations is obtained by means of the densities derived within a self-consistent
Skyrme-Hartree-Fock plus BCS method with SLy4 force.
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Table 1. The ranges of changes of 1/q (scheme II) and κ (scheme I) [2, 7] with Skyrme
and Brueckner EDFs and BHF method with Bonn B and Bonn CD potentials for the Ni,
Sn, and Pb isotopic chains.

Ni Sn Pb
1/q κ 1/q κ 1/q κ

Skyrme 2.07–2.36 1.53–1.70 1.63–2.37 1.58–2.02 1.97–2.09 1.67–1.71
Brueckner 1.14–1.24 2.22–2.44 0.94–1.16 2.40–2.90 1.01–1.04 2.62–2.64
Bonn B 1.03–1.08 1.80–1.90 0.83–0.97 2.00–2.48 0.84–0.88 2.54–2.80
Bonn CD 1.01–1.06 1.80–2.00 0.82–0.95 2.00–2.48 0.81–0.83 2.54–2.80

of masses and skins 1.6 ≤ κ ≤ 2.0. The obtained values of 1/q for Sn and
Pb isotopes using the Brueckner EDF together with the ones when using both
Bonn potentials are close to the value of 1.14 given by Bethe in Ref. [13] and to
the estimated value of 1.1838 by Myers and Swiatecki [18]. Generally, we can
note that the results of the new scheme for 1/q, in particular using Skyrme and
Brueckner EDFs, cover reasonably the estimated values of κ (between 1.14 and
2.80) in a better way than in the previous scheme.

Here we note the observed peaks in the ratio 1/q atA = 78 andA = 132 for
Ni and Sn isotopes, respectively. They are more pronounced for the choice of the
Skyrme EDF, less pronounced for Brueckner EDF, and are somewhat smoothed
out for Bonn B and Bonn CD potentials. We attribute these peaks to the sharp
nuclear density transition when passing double-magic nuclei, such as 78Ni and
132Sn, in an isotopic chain. The peculiarities of ρ(r) (and consequently the
derivative of ρ(r) which determines the weight function |F (x)|2) for the closed
shells lead to the existence of ”kinks” that had been found and discussed in our
previous works (e.g., in [2, 5, 7]). In the case of Pb isotopic chain (see Figure 1)
such kink does not exist atA = 208 and this reflects the smooth behavior without
kinks of S(A) [Eq. (11)] and related quantities for the Pb isotopic chain. Similar
peaks in the ratio κ as a function of the mass number have been observed in our
previous studies [2, 7].

The values of the symmetry energy S [Eq. (11)] and its volume SV [Eq. (4)]
and surface SS [Eq. (5)] components as functions of A deduced within the new
scheme for the same isotopic chains are presented in Figure 2. The calculated
symmetry energy for the three isotopic chains and all considered potentials turns
out to be between 24 and 31 MeV (see Figure 2). In practice, predictions for the
symmetry energy vary substantially (28–38 MeV), e.g., an empirical value of
the symmetry energy 30 ± 4 MeV is given in Refs. [19, 20]. The values of the
volume contribution SV to the NSE obtained within the new scheme in the case
of Brueckner and Skyrme EDFs are smaller than the ones derived from the pre-
vious CDFM scheme I (presented in Tables I and III of Ref. [2]). We would
like to emphasize that the results for SV in the scheme II (between 29 and 34
MeV) are more realistic than the ones previously obtained within our scheme
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Figure 2. The symmetry energy S [Eq. (11)] and its volume SV [Eq. (4)] and surface SS

[Eq. (5)] components for the isotopic chains of Ni, Sn, and Pb obtained using Brueckner
EDF (dashed line), Skyrme EDF (solid line) and BHF method with Bonn B (dotted line)
and Bonn CD (dash-dotted line) potentials from Refs. [16, 17]. The weight function
|F (x)|2 [Eq. (10)] used in the calculations is obtained by means of the densities derived
within a self-consistent Skyrme-Hartree-Fock plus BCS method with SLy4 force.

I, for instance, using Brueckner EDF (between 41.5 and 43 MeV). The new
results with scheme II are in good agreement with the available phenomenolog-
ical estimations, as follows: Ref. [10]: 30.0 ≤ SV ≤ 32.5 MeV, Ref. [12]:
31.5 ≤ SV ≤ 33.5 MeV. In the case of Ni isotopic chain our previous cal-
culations [7] with SLy4 force provided values of the volume symmetry energy
within 27.6 and 28.1 MeV for Bonn B potential and within 28.4–29.1 MeV for
Bonn CD potential. In the new approach for the same potentials the correspond-
ing values of SV are larger by 2 MeV and are better compared with the results
presented in Refs. [10,12]. Concerning the surface component of the NSE SS , it
is known that this component is poorly constrained by empirical data. Figure 2
shows that the range of the values obtained for SS and for Ni, Sn, and Pb iso-
topes in the case of Skyrme EDF is 14–18 MeV. These results come closer to the
limits on the surface symmetry parameter 11 MeV≤ β ≤14 MeV established in
Ref. [11]. The new CDFM scheme gives larger values for the surface component
in the case of the three other potentials (Brueckner, Bonn B, and Bonn CD).
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We would like to note that the same peculiarities (as for the ratio 1/q =
SV /SS presented in Figure 1), namely ”kinks” appear in the cases of S, SV ,
and SS as functions of the mass number A at the double-magic 78Ni and 132Sn
isotopes. They are stronger or weaker and depending on the use of a given nu-
clear potential. In Figure 2 a kink appears for S(A) and SV (A) not only for
the double-magic 132Sn but also for the semimagic 140Sn nucleus. As was dis-
cussed in Ref. [2], the latter is related to the closed 2f7/2 subshell for neutrons.
Kinks of the A dependence of the symmetry energy and its components in the
Pb isotopic chain are not observed.

4 Summary and Conclusions

The main results of the present work can be summarized as follows:
i) We provide an alternative approach (scheme II) to calculate the ratio q(A) =

SS(A)/SV (A) of the surface to volume components of the NSE within the
framework of the CDFM in a more direct and simple way and having stronger
physical grounds than the former one (scheme I) that had been used in our pre-
vious works [2, 7]. In the new approach we firstly determine the ratio q(x) for
a flucton in the CDFM model from the basic Droplet Model mass formula and
then we use the convolution of q(x) with |F (x)|2 to construct q(A) for finite
nuclei following the standard CDFM procedure. In this way the new scheme
avoids some conceptual and mathematical shortcomings that were met in the
previous scheme.

ii) We would like to note the dependence of the results for the ratio of SS to
SV on the effective nuclear potentials used in the calculations. In this respect,
the results of our calculations using Skyrme EDF turn out to be close to the dif-
ferent estimations obtained from a fit to nuclear properties, such as the excitation
energies to IAS and neutron-skin thickness [10], masses, and others. The values
of 1/q obtained using the Brueckner EDF for the Ni isotopic chain are in agree-
ment with those obtained in Ref. [14] from the analyses of masses and skins. In
the case of Bonn B and Bonn CD two-body potentials the results for the ratio
1/q approach the estimated values from the works of Bethe [13] and Myers and
Swiatecki [18]. Overall, the results of the new scheme for 1/q cover reasonably
the whole region of estimated values for κ (between 1.14 and 2.80) and in some
cases are somewhat better than the values obtained in the previous scheme.

iii) The values of the symmetry energy S for the three isotopic chains and all
considered potentials are between 24 and 31 MeV that is in accordance with the
region of its empirical values 30 ± 4 MeV given in Refs. [19, 20]. The results
for the volume component SV (A) of NSE in scheme II (between 29 and 34
MeV) are in good agreement with those of Refs. [10, 12] (between 30 and 33.5
MeV). The values of the surface contribution SS(A) in scheme II in the case of
Skyrme EDF (14-18 MeV) come closer to the region of 11-14 MeV established
in Ref. [11].
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iv) Analyzing the isotopic sensitivity of SV (A), SS(A), and their ratio 1/q(A)
we observe peculiarities (”kinks”) of these quantities as functions of the mass
number A in the cases of the double-magic 78Ni and 132Sn isotopes, as well as
a ”kink” of SV (A) for 140Sn. No pronounced peak at the double-magic nucleus
with A = 208 in the Pb chain is found.
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