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Abstract. Numerical calculations of the structural and decay ground state
properties of the even-even isotopes of lead Pb are presented. Such calcula-
tions are based on the relativistic Hartree-Bogoliubov method using the DD-
ME2 and DD-PC1 effective interactions. Predictions for binding energies, two-
neutron separation energies, two-neutron gaps, pairing energies, charge radii
and α-decay properties are presented and discussed. The study shows that the
relativistic Hartree-Bogoliubov theory is able to describe, with high accuracy,
the ground state properties of Pb isotopes. In addition, the well-known number
magic N=126 is reproduced and the N=184 is established as as candidate magic
number for neutron in the exotic region.
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1 Introduction

Energy density functionals (EDF) provide an accurate description of ground-
state properties and collective excitations of atomic nuclei, from relatively light
systems to superheavy nuclei, and from the valley of β−stability to the parti-
cle drip-lines [1, 2]. A particular class of EDF structure models are those based
on relativistic (covariant) energy density functionals. These models have been
successfully applied to the analysis of a variety of nuclear structure phenomena,
and the level of accuracy has reached a level comparable to the non-relativistic
HartreeFockBogoliubov approach based on Skyrme functionals [3] or Gogny
effective interactions [4]. Here we have studied the features of even-even Pb
isotopes using the program package DIRHB for the solution of the stationary
relativistic HartreeBogoliubov equations for eveneven nuclei with axially sym-
metric quadrupole deformation [5].

The paper is organized as follows: Section 2 shortly summarizes the ap-
proaches that we have used to do our calculations. In Section 3, numerical tests
as well as the input details and the interactions used in calculations are presented.
The obtained results are analyzed and discussed in Section 4. Finally, the main
conclusions and outlook are given in Section 5.
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2 Theoretical Framework

Covariant Density Functional Theory (CDFT), also often labelled as relativistic
Hartree-Bogoliubov (RHB) theory, is a microscopic theoretical tool that can be
used to describe the entire nuclear chart with success. In the present work, we
have employed two classes of relativistic Hartree-Bogoliubov theories. The first
one is the DD-PC model [6,7] which is characterised by a zero-range interaction
and the second one is the DD-ME model [5] which uses a finite interaction range.
A brief description of these models is given in the following subsections.

2.1 The density-dependent point-coupling

The effective Lagrangian density of DD-PC model is defined by [6]

L = ψ̄(iγ.∂ −m)ψ − 1

2
αS(ρ)(ψ̄ψ)(ψ̄ψ)

− 1

2
αV (ρ)(ψ̄γµψ)(ψ̄γµψ)− 1

2
αTV (ρ)(ψ̄~τγµψ)(ψ̄~τγµψ)

− 1

2
δS(∂νψ̄ψ)(∂νψ̄ψ)− eψ̄γ.A.1− τ3

2
ψ . (1)

This Lagrangian contains the isoscalar-scalar interaction (σ meson) (ψ̄ψ)(ψ̄ψ),
isoscalar-vector interaction (ω meson) (ψ̄γµψ)(ψ̄γµψ), isovector-vector inter-
action (ρ meson) (ψ̄~τγµψ)(ψ̄~τγµψ) and their corresponding gradient couplings
∂ν(...)∂ν(...). It also contains the free-nucleon Lagrangian, the point-coupling
interaction terms and the coupling of protons to the electromagnetic field. The
derivative terms in eq. (1) account for the main effects of finite range interactions
which are important for a quantitative description of nuclear density distribution.
The functional form of the couplings is given by

αi(ρ) = ai + (bi + cix)e−dix for i = S, T, TV , (2)

where x = ρ/ρsat and ρsat denotes the nucleon density in units of the saturation
density of symmetric nuclear matter. For more details see Ref [5].

2.2 The density-dependent meson-exchange

The basic building blocks of relativistic Hartree-Bogoliubov for DD-ME is the
standard Lagrangian density with medium dependent vertice [5]

L = ψ̄ [γ(i∂ − gωω − gρ~ρ~τ − eA)−m− gσσ]ψ

+
1

2
(∂σ)2 − 1

2
m2
σσ

2 − 1

4
ΩµνΩµν +

1

2
m2
ωω

2

− 1

4
~Rµν ~R

µν +
1

2
m2
ρ~ρ

2 − 1

4
FµνF

µν (3)
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with ψ is Dirac spinor and m is the bare nucleon mass. mσ , mω and mρ are me-
son masses. gσ , gω and gρ are the coupling constants and e corresponds to the
proton’s charge. It vanishes for neutron. Ωµν , ~Rµν , Fµν denote fields tensors.

Ωµν = ∂µΩν − ∂νΩµ , (4)
~Rµν = ∂µ~ρν − ∂ν~ρµ , (5)
Fµν = ∂µAν − ∂νAµ . (6)

The coupling of the σ and ω mesons to the nucleon field reads [5]

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω (7)

with the density dependence given by

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
, (8)

where x = ρ/ρsat, ρ is the baryonic density and ρsat is the baryon density at
saturation in symmetric nuclear matter. In eq. (8), the parameters are not inde-
pendent, but constrained as follows: fi(1) = 1, f ′′σ (1) = f ′′ω(1), and f ′′i (0) = 0.
These constraints reduce the number of independent parameters for the density
dependence.
In the ρ-meson case, we have an exponential density dependence

gρ(ρ) = gρ(ρsat)e
−aρ(x−1) . (9)

The isovector channel is parametrized by gρ(ρsat) and aρ.

3 Numerical Details

This investigation is realized by using the relativistic Hartree-Bogoliubov (RHB)
theory based on the DD-PC1 and DD-ME2 functionals and separable pairing
within the DIRHB package [5], in which the RHB equations can be solved iter-
atively in a basis of spherical, axially symmetric or triaxial harmonic oscillator
(HO).

In our calculation, we have used the finite range pairing interaction separable
in coordinate space which was proposed by Tian et al. [8]. It is given in the pp-
channel by

V pp(r1, r2, r
′
1, r
′
2) = −Gδ(R−R′)P (r)P (r′) , (10)

where R = 1
2 (r1 + r2) is the centre of mass, r = r1 − r2 are the relative

coordinates and P (r) represents the form factor which is given by

P (r) =
1

(4πa2)3/2
e−

r2

4a2 (11)
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The two parameters: the pairing strength G and the pairing width a have been
adjusted to reproduce the density dependence of the gap at the Fermi surface.
The following values: G = 728 MeV.fm3 and a = 0.6442 fm which were
determined for the D1S parametrization [8] of the Gogny force have also been
used here. The numbers of Gauss-LaguerreNGL and Gauss-HermiteNGH mesh-
points were NGL = NGH = 48, and the number of Gauss-Legendre mesh-points
was NGLEG = 80.

It is noted that all calculations performed with the DIRHB code are carried
out in a safe full anisotropic basis of NF = 18 for fermions. But for the bosons,
the number of shells is fixed to NB = 20. The β2-deformation parameter for
the harmonic oscillator basis as well as for the initial Woods-Saxon potential
is set to 0. The different parameter sets of used functionals, i.e. DD-ME2 and
DD-PC1, are given in Table 1.

Table 1. The different parameter sets of DD-ME2 [7] and DD-PC1 [6] interactions.

Parameter DD-ME2 [7] Parameter DD-PC1 [6]

m (MeV) 939 m (MeV) 939
mσ (MeV) 550.124 aσ (fm2) -10.04616
mω (MeV) 783.000 bσ (fm2) -9.15042
mρ (MeV) 763.00 cσ (fm2) -6.42729
mδ (MeV) 0.000 dσ 1.37235
gσ 10.5396 aω (fm2) 5.91946
gω 13.0189 bω (fm2) 8.86370
gρ 3.6836 bρ (fm2) 1.83595
gδ 0.000 dρ 0.64025
aσ 1.3881
bσ 1.0943
cσ 1.7057
dσ 0.4421
eσ 0.4421
aω 1.3892
bω 0.9240
cω 1.4620
dω 0.4775
eω 0.4775
aρ 0.5647

4 Results and Discussion

4.1 Average binding energy

We have performed calculations of the average binding energies BE/A of Pb
isotopes using DD-PC1 and DD-ME2 parametrizations, whose values as func-
tion of neutron numberN are shown in Figure 1. From this Figure, it is seen that
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Figure 1. The average binding energiesBE/A of even-even Pb isotopes calculated using
DD-PC1 and DD-ME2 parametrizations. The green dotted line represent the experimen-
tal values taken from Ref. [10].

the experimental data for BE/A can be reproduced accurately by the DD-ME2
and DD-PC1 interactions and the FRDM model [9]. In the exotic region, there
is a deviation between the theoretical results but it still very small. Note that the
average binding energy, can give an idea about the stability of nuclei. Here the
most stable nuclei – with high BE/A – are found around N = 130.
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Figure 2. Same as Figure 1, but for S2N .
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4.2 Two-neutron separation energy

We extract the two-neutron separation energy using the calculated binding en-
ergy values BE for each interaction, which is given by the following formula:

S2n = BE(N)−BE(N − 2) (12)

In Figure 2 we have plotted the evolution of S2N as a function of N . From the
experimental data as well as the theoretical models for S2N versus N , we can
see the shell effects at 206Pb (N = 126) which is last neutron magic number
in the valley of stability. In the exotic region, we observe, from the theoretical
models, the shell effects at 266Pb (N = 184). Therefore, this number is consid-
ered as a first number magic for neutron beyond the 206Pb in the exotic region.
Furthermore, the shell effects at N = 184 given by the DD-ME2 and DD-PC1
interactions is more evident than in the FRDM predictions.

4.3 Two-neutron shell closure

A more direct measure of the shell effect, is the two-neutron shell closure that is
defined by the following expression:

δ2n = S2n(N + 2)− S2n(N) (13)

In the Figure 3, we can observe that the experimental data for δ2N as well as
the theoretical models show a sharp peak at N=126 and at N=184. Here, again
the shell effect is more pronounced by the DD-ME2 and by DD-PC1 interac-
tions.
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Figure 3. (Color online) Comparison between the experimental data and calculated δ2N
for Pb isotopes with the DD-PC1 and DD-ME2 interactions and FRDM model.
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4.4 Pairing energy

In magic nuclei, the pairing effect is vanished. Thus, calculating the pairing
energy of nuclei allows to detect their magicity. In Figure 4, we display the
neutron pairing energy for the eveneven Pb isotopes as a function of neutron
number N. So, we can observe clearly that the pairing energy vanishes exactly
at N=126 and N=184 indicating a neutron shell closures for the nucleus under
investigation in these positions.
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Figure 4. (The calculated neutron pairing energy in even-even Pb isotopes the DD-PC1
and the DD-ME2 sets.

4.5 Charge radii

We calculated also the charge radii of even-even Pb isotopes as a function of neu-
tron number as displayed in the Figure 5. Observing experimental data for the
charge radii and the calculated values using DD-ME2 and DD-PC1, a minimum
at N=126 can be clearly seen. However, in the exotic region, the minimum ap-
pears only in DD-PC1 interaction, around N=184, where the experimental data
are not available. This implies that the minimum at N=184 might depends on
the used functional beyond the mean field for the exotic nuclei.

4.6 Qα-energy

To study the decay properties for the even-even lead isotopes, we have calculated
theQα-energy that is the energy of spontaneous α-decay. Its expression is given
by the following formula:

Qα = BE(N,Z)−BE(N − 2, Z − 2)−BE(2, 2) (14)
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Figure 5. (Color online) Same as Figure 1, but for Rch. The experimental data are taken
from Ref. [11].

In Figure 6, we show this quantity of Pb isotopes predicted by DD-ME2 and
DD-PC1 functionals and by FRDM model and compared with the available
experimental data. So as shown in this Figure, the experimental data for the
Qα-energy and the theoritical models have almost the same trend. Furthermore,
a sharp jump is observed around the well-known magic number N = 126 and at
N=184 which can be considered as a magic number in the exotic region.
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Figure 6. Same as Figure 1, but for Qα-energy.
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5 Conclusion

To sum up, even-even lead isotopes have been studied within the relativistic
Hartree-Bogoliubov (RHF) using DD-PC1 and DD-ME2 functionals. Binding
energies, two-neutron separation energies, two-neutron gaps, pairing energies,
charge radii and α-decay energy show that N = 126 persists as a neutron magic
number in the valley of stability and N = 184 is predicted to be a magic num-
ber for neutrons in the exotic region for the investigated nuclei. Furthermore,
we observe that there is a good agreement between experimental data and the
theoretical models.
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[7] G.A. Lalazissis, T. Nikšić , D. Vretenar, and P. Ring, New relativistic mean-field in-
teraction with density-dependent meson-nucleon couplings, Phys. Rev. C 71 (2005)
024312.

[8] Y. Tian, and Z.Y. Ma, P. Ring, A finite range pairing force for density functional
theory in superfluid nuclei, Phys. Lett. B 676 (2009) 44.

[9] P. Mller, A.J. Sierka, T. Ichikawab, H. Sagawa, Nuclear ground-state masses and
deformations: FRDM (2012) At. Data Nucl. Data Tables 109 (2016) 1204.

[10] M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, The AME 2020 atomic
mass evaluation (II). Tables, graphs and references, Chin. Phys. C. 45 (2021)
030003.

[11] I. Angeli, K.P. Marinova Table of experimental nuclear ground state charge radii:
An update, Atomic Data and Nuclear Data Tables 99 (2013) 69-95.

73


