Clustering Effects in ^{41, 45, 49}Ca^{*} Formed in Neutron Induced Reactions

Manpreet Kaur¹, BirBikram Singh², S.K. Patra^{3,4}

¹Indian Institute of Technology Ropar, Rupnagar -140001, India

²Department of Physics, Akal University, Talwandi Sabo - 151302, India

³Institute of Physics, Sachivalaya Marg, Bhubaneswar - 751005, India

⁴Homi Bhabha National Institute, Anushakti Nagar, Mumbai - 400085, India

The clustering effects in ^{41,45,49}Ca* nuclei formed in neutron induced reactions have been investigated within the quantum mechnaical fragmentation theory based dynamical cluster decay model (DCM) [1,2]. The results present that while moving towards neutron-rich 45 Ca^{*} and 49 Ca^{*} nuclei, the α preformation factor P_0 deceases considerably. The inculcation of relativistic mean field theory (RMFT) based microscopic T.B.E. [3,4] within DCM, give comparatively an enhanced α preformation factor for ^{41,45,49}Ca* nuclei in comparison to the case of macroscopic T.B.E. based upon Davidson mass formula. Further, the cross-section associated with α -cluster emission shows a strong isospin dependence and decreases considerably with increasing n/p asymmetry of Ca^{*} nuclei. This trend is analogous to α preformation factor trend, demonstrating that P_0 contains the nuclear structure information. Furthermore, we inculcate the microscopic nuclear potential constructed via folding the RMFT cluster densities and M3Y nucleon-nucleon interaction within the DCM [5]. The neutron skin thickness of the Ar cluster, complementary to α -cluster, is varied and its effect upon the α preformation factor is explored. The results show that with an increase in the neutron skin of Ar cluster, the α preformation factor decreases.

References

- [1] M. Kaur, B.B. Singh, R.K. Gupta, Phys. Rev. C 99 (2019) 014614.
- [2] M. Kaur, B.B. Singh, R.K. Gupta, Phys. Rev. C 103 (2021) 054608.
- [3] R.J. Furnstahl, B.D. Serot, H.B. Tang, Nucl. Phys. A 598 (1996) 539.
- [4] M. Kaur, A. Quddus, A. Kumar, M. Bhuyan, S.K. Patra, Nucl. Phys. A 1000 (2020) 121871.
- [5] A. M. Kobos, B.A. Brown, P.E. Hodgson, G.R. Satchler, Nucl. Phys. A 384 (1982) 65.