Anomalous Behaviour of Nuclear Moments of Inertia

 $\underline{\text{V.O. Nesterenko}}^{1,2},$ M.A. Mardyban $^{1,2},$ P.-G. Reinhard 3, A. Repko 4, J. Kvasil 5

¹Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia

²Dubna State University. 141982, Dubna, Moscow region, Russia

³Institute for Theoretical Physics II, University of Erlangen, D-91058, Erlangen, Germany

⁴Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

⁵Institute of Particle and Nuclear Physics, Charles University, CZ-18000, Praha 8, Czech Republic

Macroscopic rigid-body and hydrodynamical models predict an increase of nuclear moments of inertia J with the axial quadrupole deformation β i.e. regime $dJ/d\beta > 0$. Here we show that in light nuclei there can exist an anomalous regime with $dJ/d\beta < 0$ [1]. Light nuclei ²⁴Mg and ²⁰Ne provide interesting opportunities to investigate dependence of J on pairing and mean-field features at extreme deformations. Using Skyrme forces SVbas, SkM* and SLy6, we explore pairing and mean-field impacts on J in the framework of different microscopic models: Inglis-Belyaev, Thouless-Valatin and linear Adiabatic Time-Dependent Hartree-Fock. The constrained calculations cover a wide deformation range $0 < \beta < 1.2$. All the models give the similar result: at large deformations close to experimental values (β =0.605 in ²⁴Mg and 0.720 in ²⁰Ne), there is a strong counterintuitive decrease of J with β . This anomalous behavior of J is explained by specific evolution of particular particle-hole (1ph) proton and neutron configurations with β . The experimental data for the ground-state bands in ²⁴Mg and ²⁰Ne support our predictions. We discuss the conditions for this effect and possible ways of its experimental search.

References

 V.O. Nesterenko, M.A. Mardyban, P.-G. Reinhard, A. Repko and J. Kvasil, arXiv:2304.10873 [nucl-th].