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Abstract. We derived microscopic optical potentials (OPs) for elastic nucleon-
nucleus scattering within the framework of chiral effective field theories at the
first-order term of the spectator expansion of the Watson multiple-scattering the-
ory and adopting the impulse approximation. Our OPs are derived by folding ab
initio nuclear densities with a nucleon-nucleon (NN ) t matrix computed with a
consistent chiral interaction. The results of our OPs are in good agreement with
the experimental data. Recent achievements of our work are reviewed in this
contribution.

1 Introduction

The optical potential (OP) provides a successful tool to describe elastic nucleon-
nucleus(NA) scattering. Its use can be extended to inelastic scattering and to the
calculation of the cross section of a wide variety of nuclear reactions. The basic
idea is to describe the NA interaction with an effective complex and energy-
dependent potential [1,2]. The imaginary part accounts for the flux lost from the
elastic channel to open inelastic and reaction channels, while the energy depen-
dence and nonlocalities account for the underlying many-nucleon dynamics.

Phenomenological and microscopic approaches have been used to derive an
OP. Phenomenological OPs are obtained assuming an analytical form and a de-
pendence on a number of adjustable parameters for the real and imaginary parts
that characterize the shape of the nuclear density distribution and that vary with
the nucleon energy and the nuclear mass number. The values of the parameters
are determined through a fit to elastic pA scattering data. Global OPs, avail-
able for a wide range of nuclei and energies [3, 4], are quite successful in the
description of elastic scattering data and are usually adopted for the calculation
of the cross section of many nuclear reactions. Microscopic OPs are the result
of a microscopic calculation and not of a fitting procedure and are, therefore,
more theoretically founded, but in principle require the solution of the full many-
body problem for the incident nucleon and all the nucleons of the target nucleus,
which is a tremendous task, often beyond current computing capabilities. Some
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approximations are needed to reduce the problem to a tractable form and the
reliability of the OP depends on the reliability of the adopted approximations.
In general, one would expect that a microscopic OP can be less able to describe
elasticNA scattering data than a phenomenological OP, but it can have a greater
predictive power when applied to situations for which experimental data are not
yet available.

We believe that the derivation of a microscopic OP, starting from NN and
three-nucleon (3N) interactions, where the approximations and uncertainties of
the model are reduced as much as possible, is mandatory to provide reliable
predictions for a wide range of nuclei. This is particularly important for nuclei
away from stability, whose study represents a frontier in nuclear science over
the coming years and which will be probed at new rare-isotope beam facilities
worldwide [3].

In a series of papers over the last years [5–12] we derived microscopic OPs
for elastic (anti)nucleon-nucleus scattering from chiral nuclear interactions. Our
OPs have been obtained at the first-order term of the spectator expansion of
the Watson multiple-scattering theory [13,14] and adopting the impulse approx-
imation (IA). The idea was to start from a relatively simple model and with
subsequent steps improve and extend the model.

An overview of the latest achievements of our work is presented in this con-
tribution. In Section 2 we outline the theoretical framework used to calculate our
microscopic OPs. Our latest achievements and their main findings are discussed
in Section 3. Our conclusions and perspectives are drawn in Section 4.

2 Theoretical Framework

In this section we outline only the main steps of the derivation of our microscopic
OPs. More details can be found in [5–12].

The standard approach to the elastic scattering of a nucleon from a target
nucleus of A particles is the separation of the full Lippmann-Schwinger (LS)
equation for the transition operator

T = V (1 +G0(E)T ) (1)

into two parts, i.e. an integral equation for T

T = U (1 +G0(E)PT ) , (2)

where U is the optical potential operator, and an integral equation for U

U = V (1 +G0(E)QU) . (3)

In the above equations V is the external interaction, G0(E) the free Green’s
function for the (A + 1)-nucleon system, and P and Q = 1 − P projection
operators that select the elastic channel.
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A consistent framework to compute U and T is provided by the spectator
expansion, that is based on the multiple-scattering theory [13]. We retain only
the first-order term, corresponding to the single-scattering approximation, where
only one target-nucleon interacts with the projectile. Moreover, we adopt the
IA, where nuclear binding on the interacting target nucleon is neglected [5].
The adopted approximations reduce the complexity of the original many-body
problem to a form where, in practice, we have to solve only two-body equations.

After some manipulations, the OP is obtained as a folding integral of the two
main ingredients of the model: the target density and the NN t matrix, as

U(q,K;E) =
∑
N=p,n

∫
dP η(q,K,P) tNN
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where q and K represent the momentum transfer and the average momentum,
respectively. Here P is an integration variable, tNN is the NN t matrix and
ρN is the one-body nuclear density matrix. The parameter η is the Möller factor,
that imposes the Lorentz invariance of the flux when we pass from theNA to the
NN frame in which the t matrices are evaluated, and E is the energy at which
the t matrices are evaluated.

In our first papers [5–7] the use of local neutron and proton densities from
a relativistic mean-field model [15] gives the OP in a factorized form, the so-
called optimum factorization approximation, as the product of the density and
the t matrix, thus avoiding the calculation of the folding integral of Eq. (4).
For the NN interaction in tNN we used two versions of chiral potentials at
fourth order (N3LO) in the chiral expansion [16,17] in Ref. [5] and at fifth order
(N4LO) [18, 19] in Ref. [6]. We studied the chiral convergence of the potentials
in reproducing elastic pA scattering data. The results show that it is mandatory
to use chiral potentials at least at N3LO. Lower-order potentials are unable to
describe the shape and the magnitude of the scattering observables of elastic pA
scattering. The results obtained with chiral potentials at N4LO are neither better
nor worse then those obtained with chiral potentials at N3LO. In Ref. [7] we
compared the performances of our OPs and those of a successful phenomeno-
logical OP [4] in the description of the experimental data over a wide range of
nuclei, including isotopic chains, in a proton-energy range between 150 and 330
MeV. The agreement of our OPs with the data is sometimes worse and some-
times better, but overall comparable to the agreement given by the phenomeno-
logical OP, in particular, it is better for energies close and above 200 MeV.

The OP model was improved in Ref. [8], where the folding integral of tNN
and a microscopic nonlocal density obtained with the ab initio no-core shell
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model [20] (NCSM) approach, utilizing NN and 3N chiral interactions, was
calculated. The same chiral NN interaction employed to calculate the nuclear
density is used to calculate tNN . This guarantees the consistency of the theo-
retical framework and improves the soundness of the numerical predictions of
the OP model. The same approach, with the same nonlocal NCSM density, was
extended to elastic scattering of antiprotons off several target nuclei [9]. In the
calculations of tN̄N the first N̄N chiral interaction at N3LO [21] was used. Our
results are in good agreement with the existing experimental data [9].

3 Recent Achievements

The OPs of Ref. [8] usesNN and 3N interactions to calculate the target density,
the structure part of the OP, while the dynamic part, tNN , includes only the
NN interaction. Even if we can argue that the impact of 3N forces is more
important in the density, since reproducing the nuclear radii is essential for a
proper description of the diffraction minima in the differential cross section, a
more consistent OP would require the use of the same NN and 3N potentials
both in the dynamic and in the structure parts. Unfortunately, the exact treatment
of the 3N interaction is a very hard task that is beyond our present capabilities.

Many-nucleon forces can be divided into genuine contributions, arising from
the nuclear Hamiltonian, and induced terms, coming from the process of solving
the nuclear many-body problem. Genuine contributions enter directly into the
definition of the nuclear Hamiltonian in terms of the active degrees of freedom
chosen to describe the nuclear systems. Recently, with a suitable approximation,
we have investigated the role of genuine 3N forces in the dynamic part of the OP
already at the level of the single-scattering approximation between the projectile
and the target nucleon [10]. The pure 3N force is approximated by a density-
dependent NN force, obtained by averaging the third nucleon momenta over
the Fermi sphere, that is added as a medium correction of the bare NN force
used to calculate the t matrix. We constructed the density-dependent NN force
following the procedure proposed in Ref. [22].

Even if the 3N force is treated in an approximate way, this method extends
our previous OP model and allows a direct comparison of our present and previ-
ous results. A few examples of the impact of genuine 3N forces in the dynamic
part of our OPs are shown in Figure 1, where the calculated differential cross
section and analyzing power (Ay), as a function of the center-of-mass (c.m.)
scattering angle, are displayed for elastic proton scattering off 12C at energies
between 122 and 300 MeV and compared with the experimental data. All the
results are obtained with the same one-body ab initio density matrix from the
NCSM approach using NN and 3N chiral interactions. The red bands show the
results obtained with tpN calculated with the pN chiral interaction at N4LO [19]
supplemented by a density-dependent NN interaction where the matter density
ρ has been varied between reasonable values, going from surfacelike to bulklike
densities. The blue lines correspond to ρ = 0 fm−3, i.e. only the pN interaction
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Figure 1. Differential cross section (left panel) and analyzing power (right panel) as a
function of the c.m. scattering angle for elastic proton scattering off 12C at different
laboratory energies. The red bands show the results obtained using Eq.(4), where the
tpN matrix is computed with the pN chiral interaction of Ref. [19], supplemented by a
density dependent NN interaction where the matter density parameter ρ has been varied
between 0.08 fm−3 and 0.13 fm−3. The solid blue lines are obtained with ρ = 0 fm−3.
The one-body nonlocal density matrices are computed with the NCSM method using
NN [19] and 3N [23, 24] chiral interactions. Experimental data from Refs. [25–29].

is considered in the calculation of tpN . The effects of genuine 3N forces turn
out to be negligible for the cross section, where all curves basically overlap and
are in reasonable agreement with the experimental data, and somewhat larger for
Ay , where the 3N contribution improves the description of the empirical data.

Our microscopic OP has been extended to nonzero spin nuclei [11]. The
extension requires some changes in the derivation of the OP and in the formal-
ism. The main difference is that the density of a nonzero spin target displays an
additional dependence on the initial and final third component of the spin which
is then propagated to the OP and calculations get more and more involved and
time consuming with the increasing value of the target spin.

Calculations have been performed for the differential cross section and the
analyzing power of elastic proton scattering off a set of nuclei with different
values of the spin in their ground state, between J = 1/2 and 3, and the results
have been compared with the available data [11]. A couple of examples are
shown in Figure 2, for elastic proton scattering off 13C (with spin and parity
quantum number Jπ = 1/2−) and 7Li (Jπ = 3/2−) at 200 MeV. The effects of
genuine 3N forces are small on the cross section and a bit larger on Ay . The
bands, indicating the differences due to different values of the matter density,
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Figure 2. Differential cross section (top panels) and analyzing power (bottom panels), as
a function of the c.m. scattering angle, for elastic proton scattering off 13C, Jπ = 1/2−,
(left panels) and 7Li, Jπ = 3/2− (right panels), at 200 MeV laboratory energy. The
bands have the same meaning as in in Figure 1. The nuclear densities are computed with
the NCSM method using NN [19] and 3N [23, 24] chiral interactions. Experimental
data from Refs. [30, 41].

are thin for the cross section a bit larger for Ay . The impact of 3N forces is
comparable to what obtained for spin-zero targets. The agreement with data is
generally satisfactory and of the same quality as in the case of spin-zero nuclei.

The use of the ab initio NCSM method for the nuclear density makes the
theoretical framework more microscopic and consistent, producing OPs that are
quite successful in the description of the available data. The main limitation of
the NCSM is that, due to the prohibitive scaling of this approach for heavier sys-
tems, it can be used only for nuclei with A not greater than 16, while in general
and, in particular, for the study of nuclei away from stability, microscopic OPs
are required for a wider range of nuclei. It is therefore necessary to resort to
many-body approaches with better scaling with respect to the mass number that
allow reaching medium-mass and heavy nuclear targets.

We have begun exploiting the self-consistent Green’s function (SCGF) the-
ory [12], which presents better scaling of computational requirements with re-
spect to the mass number and allows us to reach heavier systems, currently up
to A ' 140, providing fully nonlocal densities for the target. The density ma-
trix has been computed using the SCGF approach and its ADC(n) algebraic
diagrammatic construction truncation scheme at different orders n. The stan-
dard Dyson formulation of SCGF has been used for closed-shell nuclei and its
Gorkov extension for semi-magic open shells [31–35]. The densities have been
computed with NN and 3N chiral forces derived within the chiral effective
field theory. Several chiral interactions are available, which are able to repro-
duce with a high precision NN phaseshifts and deuteron and triton properties.
However, constraining the interactions to only few-body observables often fails
to reproduce binding energies and radii of larger nuclei simultaneously with the
empirical nuclear matter saturation point. Recently, it has been found that proper
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saturation can be recovered if light to medium mass nuclei are also used to de-
termine the Hamiltonian [36, 37]. The possibility to simultaneously account for
energies and radii of medium-mass nuclei motivated us to adopt the NNLOsat

interaction [36] in the calculation of the densities. In particular, an accurate re-
production of the target radius is extremely important for a good description of
the diffraction minima of the cross section [38].

We investigated the dependence of the scattering observables on details of
ab initio SCGF calculations and on the chiral potential used in theNN t matrix.
Calculations are performed for Ca and Ni isotopes and the results are compared
with available experimental data [12]. Our results indicate that the SCGF input
is stable and scattering observables are well converged with respect to the model
space, 3N forces, and many-body truncation already at the ADC(2) level.

Our OPs give a good description of the experimental differential cross sec-
tions. An example is given in Figure 3, where the experimental cross sections
for elastic proton scattering off 40Ca at 65, 80, 135, and 182 MeV are compared
with the results of our OPs obtained using the Gorkov SCGF at second order,
GkvADC(2), and with the NNLOsat interaction. Our OPs describe the exper-
imental data at all energies considered, in particular, we notice the remarkable
agreement at 65 MeV, an energy that can be considered at the limit of validity
of the IA adopted in our OP model. The agreement with data gets somewhat
worse, as usual, for larger values of the scattering angle.
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Figure 3. Differential cross section as a function of the c.m. scattering angle for elastic
proton scattering off 40Ca at 65, 80, 135, and 182 MeV laboratory energies. The results of
the OPs obtained using GkvADC(2) SCGF densities computed from the NNLOsat chiral
interaction are compared to experimental data from Refs. [39–43]. Figure from Ref. [12].
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Figure 4. Differential cross section (top panels) and analyzing power (bottom panels) as
a function of the c.m. scattering angle for elastic proton scattering off 48Ca at 201 MeV
(left panels) and 58Ni at 178 MeV (right panels) laboratory energy. The results of the OPs
obtained using NNLOsat(red lines) and N4LO (blue lines) in tNN are compared. The
densities are obtained from GkvADC(2) SCGF calculations computed with NNLOsat.
Experimental data from Refs. [44] (left panels) and [45] (right panels). Figure from
Ref. [12].

Figure 4 displays the differential cross section and analyzing power as a
function of the c.m. scattering angle for protons off 48Ca at 201 MeV and 58Ni
at 178 MeV. The experimental data are compared with the results obtained us-
ing NNLOsat and N4LO [19] chiral interactions in tNN . The two interactions
produce significant differences in both shape and size of the cross section and
analyzing power. Both results give a reasonable description of the experimental
cross section, although the agreement is generally better with NNLOsat. Larger
differences are found for Ay , where both interactions describe the shape and
the position of the experimental minima, but only NNLOsat gives a remarkably
good description of their depth. More results, for different isotopes and at dif-
ferent proton energies, confirm these findings [12].

Overall, the agreement found between our results and the experimental data
is remarkably good and makes our approach to the OP comparable to the other
existing approaches on the market. We note that the NN and 3N chiral interac-
tions are the only input in the calculation of our microscopic OPs.

4 Conclusions and Perspectives

Few years ago we started a project to obtain microscopic OPs for elastic (anti)nu-
cleon-nucleus scattering within the framework of chiral effective field theories.
Our OPs were derived at the first-order term of the spectator expansion of the
Watson multiple-scattering theory and adopting the IA. They are obtained as
a folding integral of the target density and the NN t matrix. The results of
our OPs are in reasonably good agreement with the experimental data, for both
elastic proton and antiproton-nucleus scattering.
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In this contribution we have reported recent achievements of our project.
When the OP is computed with a nonlocal density from the ab initio NCSM,

NN and 3N interactions are consistently included in the structure part. The
exact treatment of the 3N force in the dynamic part involves multiple scattering
that would make the calculation too difficult. The impact of genuine 3N forces
has been evaluated, already at the level of the single-scattering approximation,
averaging them over the Fermi sphere and thus defining a density-dependent
NN interaction which acts as a medium correction of the bare NN potential
and which is then added to the bare NN potential in the calculations of the NN
tmatrix. The effect of this 3N force is generally very small on the cross sections
but can be sizeable on polarization observables. Of course a more complete
treatment of 3N forces would be required.

The extension of our microscopic OPs to nonzero spin targets provides a
good description of the data, of the same quality as the one obtained for zero
spin targets, and allows us to give reliable predictions for a wider range of stable
and unstable nuclei.

The use of ab initio densities from the SCGF theory allows us to extend our
OP to heavier targets. The combination of the spectator model and SCGF theo-
ries offers good opportunities for the physics of radioactive beams, in particular,
toward the solution of the long-standing issue of the lack of consistency between
structure and reactions in the interpretation of data.

The SCGF theory can provide two-nucleon spectral densities [46], which
are the basis for extending the OP model to the next term of the spectator ex-
pansion. At energies where the IA may become questionable, the self-energy
computed through SCGF theory is itself a viable ab initio OP [47]. Future work
in these directions would allow us to extend the energy range of applicability of
the microscopic OP.
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