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Abstract. The isoscalar giant resonances for 94Zr and 96Zr are studied by
the quasiparticle finite amplitude method based on the covariant density func-
tional theory using the Density-Dependent Point-Coupling DD-PC1 and DD-
PCX models. Validation of the numerical implementation is examined for 90Zr
and 92Zr, then a good agreement with the available experimental isoscalar mono-
pole strengths is obtained. The well-known monopole-quadrupole coupling that
splits the isoscalar giant monopole resonance is identified in 94Zr and 96Zr iso-
topes. A soft monopole mode is found near 14.7 MeV for 94Zr, and at 15.2 MeV
for 96Zr.

1 Introduction

Giant resonances [1,2] are collective excitations resulting from either the oscilla-
tion of nuclear density or nucleon motion induced by external fields or collisions.
The most extensively studied types among these resonances are the isoscalar gi-
ant monopole resonance (ISGMR) [3, 4] which is considered as a compression
mode of the nucleus, and the isoscalar giant quadrupole resonance (ISGQR). IS-
GQR occurs when the quadrupole vibration energy of the nucleus resonates with
the excitation energy [5]. The initial identification of giant resonances in nuclei
dates back to 1937 when Bothe and Gentner, as noted in [6], made the pioneering
discovery. Later, in 1948, Goldhaber and Teller [7] proposed an interpretation
of these resonances as the isovector giant quadrupole resonance (IVGDR).

By incorporating the Quasiparticle Finite Amplitude Method (QFAM) [8]
within the framework of the Relativistic Hartree-Bogoliubov (RHB) model [9–
11], the computational challenges associated with the Random Phase Approx-
imation (RPA) method [12], are mitigated. This integration enables the explo-
ration of excitation spectra and collective modes in nuclei with greater efficiency.
As a result, it has yielded valuable insights into various phenomena, includ-
ing giant resonances [13], pygmy dipole resonances [14], and soft monopole
modes [15], thereby advancing our comprehension of nuclear structure and dy-
namics.

In this study, we have conducted calculations for the ground state and the
distribution of giant resonances in Zr isotopes using the Quasiparticle Finite
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Amplitude Method (QFAM) within the framework of the Relativistic Hartree-
Bogoliubov (RHB) model. We have employed two different relativistic zero-
range effective interactions, DD-PCX [16], and DD-PC1 [17], which exhibit
distinct values for nuclear matter incompressibility.

The structure of this article is as follows: In Section 2, we provide a brief
summary of the approaches employed for our calculations. Section 3 contains
the numerical specifics, information about the interactions utilized in our cal-
culations, and a presentation, analysis, and discussion of the results obtained.
Finally, in Section 4, we present the main conclusions drawn from our work and
provide an outlook for future research.

2 Theoretical Framework

The decay and the structural properties, as well as the excited states, not only
of spherical but also of deformed nuclei can be successfully described by the
Relativistic Hartree-Bogoliubov (RHB) approach. In such theory, the nuclear
single-reference state is described by a generalized Slater determinant |Φ > that
represents a vacuum with respect to independent quasiparticles. The quasipar-
ticle operators are defined by the unitary Bogoliubov transformation, and the
corresponding HartreeBogoliubov wave functions U and V are determined by
the solution of the RHB equation:(

hD −m− λ ∆
−∆∗ −h∗D +m+ λ

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
. (1)

Where hD is the single-nucleon Dirac Hamiltonian, ∆ denotes the pairing field,
and U and V are Dirac spinors.

The starting point of quasiparticle finite amplitude method (QFAM) is the
linear response equations [19]

(Eµ + Eν − ω)Xµν(ω) + δH20
µν(ω) = −F 20

µν , (2)

(Eµ + Eν − ω)Yµν(ω)− δH02
µν(ω) = −F 02

µν , (3)

Eµ and Eν are quasiparticle energies, Xµν and Yµν are transition amplitudes
corresponding to annihilating two quasiparticles µν (labeled as 02) or to creat-
ing two quasiparticles µν (labeled as 20), respectively, and δH is the induced
Hamiltonian when the nuclear system is perturbed by the external field F with
the frequency ω.

Finally, the function response reads

S(F̂ , ω) = ImTr(f†δρ(ω)) (4)

where f† are the matrix elements of the operator F̂ .
The transition density can be defined by the following equation

δρtr(ω) =
1

π
ImTr(δρ(ω)) (5)
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3 Numerical Details

In the ground state calculations, the numerical details suggested in Refs. [10,11]
are also followed here. The covariant density functionals DD-PCX [16] and
DD-PC1 [17] are used. Such parameters are given in Table 1. The pairing
correlation is treated with the separable pairing force in coordinate space which
was proposed by Tian et al. [18]. The equations of motion for nucleons are
solved in a triaxial-deformed harmonic oscillator basis where we have used a
safe full anisotropic basis.

For QFAM calculations, to avoid the occurrence of singularities of Eqs. (2)
and (3), we replace the frequency ω by ω + iγ with a small parameter γ, related
to the Lorentzian smearing τ = 2γ in relativistic quasipatricle RPA calculations
[19]. The parameter η which induces a numerical difference is chosen as 10−6,
and will be used in all the following calculations.

Table 1. The parameter sets of DD-PCX [16] and DD-PC1 [17] interactions

Parameter DD-PCX [16] DD-PC1 [17]

m (MeV) 939 939
as (fm2) -10.97924 -10.04616
bs (fm2) -9.03825 -9.15042
cs (fm2) -5.31301 -6.42729

ds 1.37908 1.37235
av (fm2) 6.43014 5.91946
bv (fm2) 8.87062 8.86370
cv (fm2) 0.0 0.0

dv 0.65531 0.64025
K0 213 230

m∗/m 0.559 0.580

3.1 Ground-state deformation

Figure 1 shows the potential energy curves (PECs) of Zr isotopes calculated
using the DD-PC1 and DD-PCX functionals, with the constraint on the axial
deformation parameter β. For each isotope, PECs are obtained by minimization
of the absolute binding energy under the constraint of a fixed β. As one can
see from Figure 1, the PECs obtained with DD-PC1 and DD-PCX functionals
lead to the same quantitative outcome for 90−96Zr. Except for the magic nucleus
90Zr, where the potential energy is relatively steep and the spherical minimum
is well defined, the all other investigated isotopes look soft against deformation
parameter with shallow potential energy, especially when the mass number A
increases.

In 92Zr nucleus, the ground-state fluctuates around the spherical state show-
ing flatness in the potential energy curve, and for 94Zr, the ground-state become
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Figure 1. Potential energy curves obtained by constrained calculations with DD-PC1 and
DD-PCX functionals.

almost prolate at β = 0.2 with an additional predicted minimum on the oblate
side at β = −0.2. The same behaviour is observed for 96Zr but with a potential
barrier separating the two minima (prolate minima at β = 0.25 and oblate min-
ima at β = −0.2), which shows that there is a coexistence between prolate and
oblate shapes.

3.2 QFAM strength evolutions

In order to look for possible vibration properties peculiar to a modest axial defor-
mation, we performed QRPA calculations for the Zr isotopes with the constraint
β that corresponds to potential energy minimum in each studied nucleus. In Fig-
ure 2, the calculated strength functions of isoscalar giant monopole resonance
(ISGMR), within DD-PC1 and DD-PCX functionals, for Zr isotopes are pre-
sented and compared to the available experimental data. For the prolate config-
uration, the obtained results within the two functionals exhibit that, in addition
to the main ISGMR peak, a low-energy shoulder (so called also soft monopole
mode) appears in 94,96Zr. This structure gives a flat maximum in 96Zr for the
oblate case within the DD-PC1 parameterization, whereas the DD-PCX func-
tional shows that ISGMR presents a single maximum.

Figure 2 displays that DD-PCX (K0=213 and m∗/m = 0.559) reproduces
the ISGMR data much better compared to DD-PC1 (K0=230 and m∗/m =
0.58). It overestimates the experimental ISGMR peak energies by 1 MeV in
90Zr and by 1.25 MeV in 92Zr. For DD-PC1, the overestimate of peak energies
are 2 MeV in 90Zr and 2.35 MeV in 92Zr. Thus the small value ofK0 andm∗/m
are required to predict accurately the ISGMR.

To shed more light on the observed schedules in 94,96Zr, we have displayed,
in Figure 3, the ISGQR strength within the DD-PCX and DD-PC1 models. For
both models the ISGQR peaks at 14.7 MeV in 94Zr and at 15.2 MeV in 96Zr.
At the same points of energies, the ISGMR presents a low-energy shoulders.

141



M. El Adri, Y. El Bassem, A. El Batoul, M. Oulne

5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

IS
G

M
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1
 Exp

90Zr

b=0.0

5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

IS
G

M
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1
 Exp

92Zr

b=0.0

5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

IS
G

M
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1

94Zr

b=-0.15

5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

IS
G

M
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1

94Zr

b=0.2

5 10 15 20 25 30 35
0

200

400

600

800

1000

IS
G

M
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1

96Zr

b=-0.2

5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

IS
G

M
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1

96Zr

b=0.25

Figure 2. The calculated isoscalar monopole strengths in Zr isotopes, within DD-PC1
and DD-PCX models. The strengths are compared with the available experimental data.

This can be expalined by the deformation-induced coupling of the monopole
and quadrupole modes.

In order to investigate the microscopic structure of the observed low-energy
shoulders and to check which vibration dominates in 94,96Zr, the transition den-
sities in the (z,r) plan are calculated and illustrated in Figure 4. Using DD-PC1
and DD-PCX, the results are plotted near the soft monopole mode at ω =14.7
MeV for 94Zr, and at ω =15.2 MeV for 96Zr. The predicted root-mean-square

5 10 15 20 25 30 35
0

100

200

300

IS
G

Q
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1

94Zr

b=0.2

Excitation energy [MeV]
5 10 15 20 25 30 35

0

100

200

300

IS
G

Q
R 

St
re

ng
th

 [
fm

4 /M
eV

]

 DD-PCX
 DD-PC1

96Zr

b=0.25

Excitation energy [MeV]

Figure 3. The calculated isoscalar quadrupole strengths in 94,96Zr isotopes, using DD-
PC1 and DD-PCX models.
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Figure 4. Transition densities of the soft monopole mode for 94,96Zr isotopes in the
prolate case using DD-PC1 and DD-PCX models.

radii of 94Zr and 96Zr are respectively 4.59 fm and 4.66 fm for DD-PCX, and
4.57 fm and 4.66 fm for DD-PC1. Due to the prolate deformation, the nucle-
ons of both nuclei vibrate differently in the r-direction and in the z-direction.
According to the above discussion, this can be also explained by the coupling
between the ISGMR and ISGQR. In addition, the nucleons near the surface may
vibrate in a different phase with respect to the nucleons in the core. The identi-
fied vibrations predominate in all cases in z-direction with high amplitude.

4 Conclusion

A systematic analysis of isoscalar giant monopole resonance strength in Zr iso-
topic chain, and especially of the coupling between the ISGMR and ISGQR,
has been carried out within the framework of the quasiparticle finite amplitude
method based on the deformed relativistic Hartree-Bogoliubov theory. For this
purpose, two effective forces DD-PCX and DD-PC1, characterized by different
values of incompressibility K0 and Dirac mass ratio m∗/m, are selected.

We show that, in the ground state, for most investigated Zr isotopes, the
potential energy curve (PEC) as a function of the deformation parameter β looks
soft with shallow potential energy. Our QFAM calculations based on a deformed
ground state reproduce the profile of the monopole strength distributions. In
94Zr and 96Zr, the monopole strength exhibits a main peak and a lower-energy
shoulder near 15.7 MeV and near 14.7 MeV, respectively in both oblate and
prolate cases. According to our interpretations, this shoulder is produced by the
deformation-induced coupling of ISGMR and ISGQR.

It is also shown that DD-PCX functional with low value for K0 and for
m∗/m, reproduce better the ISGMR peak energies. We note, furthermore, that
for the observed soft monopole modes, the neutron vibration occurs with a dif-
ferent phase near the surface region compared to the nucleons in the core.

143



M. El Adri, Y. El Bassem, A. El Batoul, M. Oulne

References

[1] P. Chomaz, N. Frascaria: Multiple phonon excitation in nuclei: experimental results
and theoretical descriptions. Phys. Rep. 135 (1995) 268.

[2] B.L. Berman, S.C. Fultz: Measurements of the giant dipole resonance with mo-
noenergetic photons. Rev. Mod. Phys. 47 (1975) 713.

[3] S. Shlomo, P.J. Siemens: Isoscalar giant monopole in a macroscopic-microscopic
approach. Phys. Rev. C 31 (1985) 2291.

[4] Y.K. Gupta, et al.: Deformation effects on isoscalar giant resonances in Mg 24.
Phys. Rev. C 93 (2016) 044324.

[5] T. Kishimoto, et al.: Giant quadrupole resonance in deformed nuclei. Phys. Rev.
Let. 35 (1975) 552.

[6] W. Bothe, W. Gentner: Atomumwandlungen durch-Strahlen. Z. Physik 106 (1937)
236248.

[7] M. Goldhaber, E. Teller: On nuclear dipole vibrations. Phys. Rev. 74 (1948) 1046.
[8] T. Nakatsukasa, T. Inakura, K. Yabana: Self-consistent calculation of nuclear pho-

toabsorption cross sections: Finite amplitude method with Skyrme functionals in
the three-dimensional real space. Phys. Rev. C. 76 (2007) 9 024318.

[9] J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng: Relativistic
continuum Hartree-Bogoliubov theory for ground-state properties of exotic nuclei.
Prog. Part. Nucl. Phys. 57 (2006) 470-563.

[10] M. El Adri, M. Oulne: Neutron shell closure at N = 32 and N = 40 in Ar and Ca
isotopes. Eur. Phys. J. Plus 135 (2020) 268.

[11] M. El Adri, M. Oulne: Shell Evolution in Neutron-rich Ge, Se, Kr and Sr Nuclei
within RHB Approach. IJMPE 29 (2020) 2050089.

[12] X. Sun, J. Chen, D. Lu: Pygmy dipole resonance built on the shape-isomeric state
in 68Ni. Phys. Rev. C. 98 (2018) 024607.

[13] H. Sasaki, K. Toshihiko, S. Ionel: Noniterative finite amplitude methods for E1 and
M1 giant resonances. Phys. Rev. C. 105 (2022) 044311.

[14] D. Savran, T. Aumann, A. Zilges: Experimental studies of the pygmy dipole reso-
nance. Prog. Part. Nucl. Phys. 70 (2013) 210-245.

[15] J.C. Pei, M. Kortelainen, Y.N. Zhang, F.R. Xu: Emergent soft monopole modes in
weakly bound deformed nuclei. Phys. Rev. C 90 (2014) 051304.
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