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Abstract. We calculate and present results for the construction of the pairing
states and the rotational states of Elliott type in terms of single-particle Slater
determinants as well as for their transformation brackets. The remaining cases
for the model space of the sd shell are resolved so establishing a complete cor-
respondence between the two sets of states allows us to develop a mixed-mode
pairing-plus-quadrupole approach for nuclei where the two bases enter on an
equal footing.

1 Introduction

It is well known that the pairing and the quadrupole-quadrupole interactions are
the most important ingredients of the short- and the long-range part of the resid-
ual interaction in a nuclear system. This is a good reason to want to know the
exact relation between their many-particle eigenstates. This knowledge could be
an excellent starting point to build a model where the two modes participate on
an equal footing.

One method to find this relation is by working in one of the bases while
expressing the other interaction in terms of tensors typical for the first interaction
and then to diagonalize the obtained energy matrix. The disadvantage of such
an approach is that some of the obtained eigenstates (especially the ones which
are obtained degenerate in energy) may turn out to be mixed. To avoid this it
might be more advantageous to work with a method which does not lead to such
mixture and generates each type of the states in terms of linear combinations in
some common basis.

In this contribution, we review an old method [1] which generates the pairing
and the rotational states in terms of Slater determinants built from single-particle
states which are exactly related. With the goal of achieving some complete cor-
respondence between the bases, we add some newly obtained results for the con-
structed states in the SU(3) irreps for the U(6) as well as for the transformation
brackets not being the focus of an earlier paper [2].
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2 Pairing-plus-Quadrupole Model

First introduced by Bohr and Mottelson [3] and Belyaev [4], the Pairing-plus-
Quadrupole model has been widely used to reproduce both few-particle non-
collective and many-particle collective features of nuclei [5, 6]. The most gen-
eral form of a pairing-plus-quadrupole Hamiltonian that one could use includes
isoscalar and isovector pairing parts where each of them has a strength of G0

and G1, respectively. It is the following:

H = G0

∑
µ

D†µDµ +G1

∑
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P †µPµ −
χ

2
Q ·Q (1)
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with D(l) = (D†(l))† and P (l) = (P †(l))†. In the specific case of the super-
multiplet Wigner model [7] the two pairing strengths are equal, i.e. G0 = G1.

The two chains of groups which can be used for the classification of the
states of a many-particle nuclear system and which diagonalize the full pairing
(with G0 = G1) or the quadrupole part of the Hamiltonian are

U(4Ω) ⊃ U
(µ)
{f}(Ω)⊗ U (στ)

{f̃} (4) ⊃ [G ⊃ SOL(3)]⊗ [SUS(2)⊗ SUT (2)] (4)

where G = SU(λ,µ)(3) or SOL(Ω) are the relevant groups for the case of ro-
tational and pairing states, respectively. The subscripts in these chains are the
labels which describe the corresponding irreducible representations (irreps).

So, the states ofN nucleons classified according to the above group-subgroup
chains are denoted by

|{f}α(λ1λ2λ3)κLML, {f̃}βSMSTMT 〉 (5)

and

|{f}α(λ, µ)κLML, {f̃}βSMSTMT 〉 (6)

where α, κ and β are the multiplicity indices which account for the degeneracy
in the corresponding reduction. In the rest of the text we will call these simply
the pairing states of the Wigner supermultiplet scheme and the rotational states
(or the Elliott SU(3) scheme).
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3 Method of Calculation

A method for the construction of the rotational and pairing eigenstates for the
case with equal strengths G0 = G1 using Slater determinants built from the
same set of single particle states of the harmonic oscillator has been developed
by Moshinsky in the early sixties [1]. As a result, the relation between some
states from these two sets of bases was found by calculating the dot product of
the two sets resulting in finding the transformation brackets between these states.

Our goal is to achieve a completeness in the correspondence between the
two bases which means to be able to express any state from one of the sets as
a linear combination of the states from the other set. For the purpose, we need
to complete the calculations for all the states from the two bases and to end up
having all the values for the transformation brackets.

First, let us start with the explanation for the construction of the SU(3)-
scheme states (6). For a harmonic oscillator type of potential it is convenient to
introduce the following creation and annihilation operators

a†q = 1/
√

2(xq − ipq) aq = 1/
√

2(xq + ipq) q = −1, 0,+1 (7)

where xq , xq
′

(pq , pq
′
) are respectively the covariant and contravariant spherical

components of the position (momentum) vector.
As our system of nucleons obeys the Pauli principle we can introduce, as

usual, the second-quantization picture by the correspondence ψ → b†µs |0〉,
where b†µs is a fermion creation-operator and bµs is the corresponding annihi-
lation operator, obeying the usual anticommutation rules; |0〉 is the vacuum state
with the property bµs |0〉 = 0 for all µ, s. An N -particle state will then be
P |0〉 ≡ b†µ1s1b

†
µ2s2 ...b

†
µNsN |0〉 where the letter P in this notation stands for a

polynomial in the single-particle states.
For the case of the rotational states (6) we use the following single-particle

states µ ≡ n1n0n−1, s ≡ στ :

n1n0n−1 ≡ 200, 110, 101, 020, 011, 002

στ ≡ 1

2

1

2
,

1

2
− 1

2
,−1

2

1

2
,−1

2
− 1

2
(8)

where the sequences of non-negative integers n1n0n−1 with n1 +n0 +n−1 = 2
describe the 6 possible single-particle states for the sd shell which is the model
space of focus in this contribution. The weight of each of the single-particle
states is known and is equal to {w1, w2, w3} = {n1, n0, n−1}. Knowing this,
one can produce a table with the weights for any constructed N -particle state.
Another possible choice for the single-particle states in a shell η of the harmonic
oscillator can be characterized by the quantum numbers ηlm with l = η, η −
2, η − 4, ..., 1 or 0 and m = l, l − 1, ...,−l.

The method developed by Moshinsky for obtaining the transformation brack-
ets between the two bases (5) and (6) follows the following two steps. First,
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for each of the states (5) and (6), we use the single-particle states to construct
the many-particle states and use the expansion of the U(3) states of highest
weight over the U(Ω) states. The HWS for a U(3) irrep (k1k2) is labelled as
|{f}(k1k2)L = ML = k1〉. The highest L value is always unique and has the
value L = ML = k1. As a second step, we use some lowering operators to find
the rest of the states in that irrep.

The chains of groups that are used to classify the states of a nucleus start with
the groupU(4Ω) and since the state of the nucleus should be fully antisymmetric
the only relevant representation for the case of N particles is {1N}.

The U(4Ω) generators are

b†µsb
µ′s′ µ, µ′ = 1, ...,Ω, s, s′ = 1, ..., 4 (9)

as their number is (4Ω)2 where Ω is the spatial degeneracy of the oscillator shell
(which for the sd shell is Ω = 6).

Related to the generators of U(4Ω) are the U(Ω) generators which raise
(µ < µ′) the weight, give the weight (µ = µ′) and lower the weight (µ > µ′)
Cµ′

µ =
∑
s b
†
µsb

µ′s as well as their counterparts, the U(4) generators on the spin-
isospin side of the chains (4), which are Cs

′

s =
∑
µ b
†
µsb

µs′ .
Now, we can write the highest weight state (HWS) for an irrep of the U(6)×

U(4) group. In a specific example, say for seven particles, the state can be
written as

P |0〉 ≡ b+11b
+
12b

+
13b

+
14b

+
21b

+
22b

+
31 |0〉 =

1

4!2!1!
∆1234

1111∆12
22∆1

3 |0〉 (10)

and it is the HWS of both the irrep {421} ofU(6) and the conjugate irrep {3211}
of U(4), as can be shown immediately if we apply the raising generators of U(6)
and U(4) will give a zero as a result.

The weight of a U(3) state can be determined as eigenvalues of some of the
components of the U(3) operator:

G11P |0〉 = f1P |0〉 , G00P |0〉 = f2P |0〉 , G−1−1P |0〉 = f3P |0〉 , (11)

where f1f2f3 being the label of the irrep of U(3) and k1 = f1−f3, k2 = f2−f3
being the corresponding label for SU(3) which are related to the Elliott labels λ
and µ by k1 = λ+ µ, k2 = µ.

Moreover, the HWS for a U(3) irrep should also satisfy the following equal-
ities

G01P |0〉 = G−11 P |0〉 = G−11 P |0〉 = 0 (12)

which means that the action of the U(3) raising generators on such a state should
result in zero.

It turns out that one can express other operators by using the operators Cµ′

µ

and Cs
′

s . For example, the U(3) raising, weight, and lowering operators Gq′q can
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be expressed in terms of the U(Ω) generators Cµ′

µ :

Gq
′

q =
∑
µ,µ′

〈µ|a+q aq
′
|µ′〉Cµ

′

µ q, q′ = −1, 0, 1 (13)

where a†q = 1/
√

2(xq − ipq) and aq = 1/
√

2(xq + ipq) with q = −1, 0,+1 are
the creation and annihilation operators (7) for the harmonic oscillator Hamilto-
nian and the generators of a U(3) group while the bra and the ket are harmonic
oscillator wave functions (8) with n1+n0+n−1 = η. The expansion coefficients
have been calculated in [1], Chapter 7.

Now, the key part in generating the HWS for a U(3) irrep is the following. If
we apply systematically products of raising operators Cµ′

µ (i.e. with µ > µ′) on
the HWS in U(6)×U(4) (while maintaining the state of highest weight in U(4))
we get a linear combination of the same type of product of Slater determinants,
so for our example in (10) the action will give

Cµ
′′′

µ′′ · · · Cµ
′

µ =
∑
{µ}

A{µ}∆
1234
µ1µ2µ3µ4

∆12
µ′
1µ

′
2
∆1
µ′′
1
|0〉 (14)

as these are states which are not characterized by definite representations of the
groups U(3) and SO(3). In order to become such a state we need to impose the
conditions in (12) which determine the values for the expansion coefficients Aµ.

Similar expansions as in (13) over the operators Cµ′

µ can be found for the
following three operators:

Lm=−1 = −
√

2
∑
q,q′

(−)q
′
〈1q; 1− q′| 1m = −1〉Gq

′

q , (15)

Qτ = −
∑
q,q′

(−)q
′
〈1q; 1− q′| 2τ〉Gq

′

q , (16)

M(2)
LL′ =

−2∑
τ=2

(−)τ

√
(2 + τ)!

22−τ (2− τ)!

(L− L′ + 2)!(L+ L′ + 3)!

(L− L′ + τ)!(L+ L′ + 1 + τ)!
(L−1)τ+L−L

′
Qτ . (17)

These are the lowering operator L−1 in the orbital part of the group chain
(4), the operator of the quadrupole momentum Qτ and the lowering opera-
tor M(2)

LL′ which from a state with L,ML = L produces a state of the same
U(3) irrep but with L′,ML′ = L′. A further action of the operator L−1 will
then produce all the states with the lower values of the projection ML′ , e.g.
L−1 |{f}(λ, µ)L′,ML′ = L′〉 = |{f}(λ, µ)L′,ML′ = L′ − 1〉 and so on.

By construction, the operatorM(2)
LL′ has the following property when applied

to the rotational states:

M(2)
LL′ |{f}α(k1k2)κLL〉 =

∑
κ′

Bκ′ |{f}α(k1k2)κ′L′L′〉 (18)
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so, the action produces a linear combination of states with a different pair of
values L′ = ML′ over the possible values of the inner multiplicity index κ′.

In a similar fashion, on the U(4) spin-isospin part of the chain (4), two op-
erators are defined with a function similar to the operatorM(2)

LL′ which from the
U(4) HWS which is the one with values for the spin and isospin of SH.W. =
(f̃1 + f̃2 − f̃3 − f̃4)/2, TH.W. = (f̃1 − f̃2 + f̃3 − f̃4)/2 produces states with
different spin but still of equal value for its projection, i.e. S′,MS′ = S′ (and
T ′,MT ′ = T ′). Then one can use the lowering operators

S−1 = (1/
√

2)(C 1
3 + C 2

4 ) (19)

T−1 = (1/
√

2)(C 1
2 + C 3

4 ) (20)

in order to obtain states with all other projections MS′ and MT ′ of the spin S′

and isospin T ′, respectively.
Finally, to construct the pairing states (5), we choose the set of single-particle

states to be m ≡ ηlm which denotes the following six single-particle states:

m ≡ {2, 1, 0,−1,−2, 0′} = {222, 221, 220, 22− 1, 22− 2, 200} (21)

where the values for the transformation bracket between the single-particle states
|ηlm〉 and |n1n0n−1〉 is well known [8]. The procedure of identifying the
SO(6) and SO(5) generators is described in details in [9], Section 5. Here,
we only mention that we use the following operator similar toM(2)

LL′ :

M(3)
LL′ =

−3∑
τ=3

√
(3 + τ)!

23−τ (3− τ)!

(L− L′ + 3)!(L+ L′ + 4)!

(L− L′ + τ)!(L+ L′ + 1 + τ)!
(L−1)τ+L−L

′
Qτ . (22)

In order to construct this operator we recombine the generators of SO(5) in the
following way:

Lq =

√
5

2

∑
mm′

(−)m
′
〈2m; 2−m′| 1q〉Λ̇m

′

m , (23)

T τ =

√
5

2

∑
mm′

(−)m
′
〈2m; 2−m′| 3τ〉Λ̇m

′

m (24)

where L1,L0,L−1 are the generators of the three-dimensional rotational group,
while T3, ..., T−3 are the components of a Racah tensor of rank three.

Since both types of states (5) and (6) can be written as expressions in terms
of the same type of single-particle states we can take their dot product which
gives us the transformation brackets between the two schemes.
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4 Results

Moshinsky and his collaborators have published their results [2, 9] for a proton-
neutron system of 2 and 4 particles in the sd shell. More specifically, the con-
struction of all rotational states in the former case and from the U(6) irreps {4},
{22} (both for S = 0) and {31} (only the result for (λ, µ), S = (71), 1) ex-
pressed in terms of the Slater determinants for the latter. They also published
the transformation brackets for most of the cases (all for the 2-particle system
and those between the states with U(6) irreps of {4} and {22} for the 4-particle
system).

The cases we present here are for a proton-neutron system of 4 particles in
the sd shell where we focus on the remaining three U(6) irreps {31}, {211},
and {14} as the complete list of states in chains (4) is displayed in Table 1 for
the rotational states while for the pairing states only the SO(6) irreps are shown.
By adding these we achieving the goal of a one-to-one correspondence between
the two bases with a future extension for other bases as well as other reduction
chains.

Table 1. The possible SU(3)- and O(6)-scheme states which can be formed for the
U(6) irreps {31}, {211} and {14} in the sd shell. Superscripts in the label L denote the
multiplicity of the states.

Rotational states Pairing states
U(6) SU(3) ⊃ SO(3) O(6) U(4) ⊃ SU(2)× SU(2)

{f} (λ, µ)L [λ1λ2λ3] {f̃}(S, T )

{31} (61)1234567 [310] {211}(1, 0)
(42)02234256 [200] (0,1)
(23)123245 [110] (1,1)
(31)1234
(12)123245
(20)02

{211} (50)135 [211] {31}(1, 0)
(23)123245 [21-1] (0,1)
(31)1234 [110] (2,1)
(12)123 (1,2)
(01)1 (1,1)

{14} (12)123 (110) {4}(0, 0)
(1,1)
(2,2)

The highest-weight states for all the U(3) irreps which belong to the three
U(6) irreps from Table 1 were built by selecting all possible and linearly inde-
pendent products of Slater determinants composed from our knowledge of the
U(3) weights of the single-particle states (8).
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Figure 1. Highest weight states for U(3) irreps expressed in terms of (products of)
Slater determinants ∆

{s1}
{µ1}...∆

{sj}
{µj}

built from single-particle states |n1n0n−1〉 which
are eigenstates of the harmonic oscillator.

The results expressed by using only the independent Slater determinants built
from the harmonic oscillator single-particle eigenstates are given in Figure 1.
Using the lowering operators, one can find expressions for the rest of the states
in Table 1.

' '

'

Figure 2. Transformation brackets between wave functions in the SU(3) rotational
scheme and the SO(6) pairing scheme for 4 particles in the sd shell.
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Similar procedure has been performed for the pairing eigenstates (5). Fi-
nally, we compare the expressions obtained for the two bases as their dot prod-
uct gives the transformation brackets between the two schemes. Some of the
obtained results are presented in Figure 2.

5 Discussion

The approach described in this contribution has the advantage to be quite simple
and universal. After we found the complete relation between all the states from
the two sets of bases for a nucleus of choice, our next step is to apply it. The
method may also be used to find some useful relations between different sets of
bases, especially when a simple (or even a more complicated) analytical result
is hard to achieve.

The obtained transformation brackets between the two bases allow us to
avoid the knowledge of the expansion coefficients for the pairing operator in
terms of SU(3) tensors as well as the calculation and use of the SU(3) Wigner
coefficients - both of which are needed to obtain the matrix elements for the
pairing operator and finally - to diagonalize the energy matrix, as is usually the
procedure when working in a single-shell-model basis of Elliott type. Instead,
this found relation gives us the opportunity to introduce and estimate the quality
of a mixed-mode approach where the basis is composed of two sets - the Elliott
rotational states and the pairing states [10].
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