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Abstract. In this study, we explore the phenomenon of shape evolution in even-
even 96−130Pd isotopes, employing the covariant density functional theory with
two different parameterizations: the density-dependent meson-exchange DD-
ME2 and the density-dependent point-coupling DD-PC1. This investigation is
done on the basis of the evolution of the ground state shapes obtained within the
axial and triaxial potential energy surface calculations. The shape transition in
the palladium isotopic chain is conspicuously evident and distinct. Furthermore,
various ground-state properties, including binding energy, two-neutron separa-
tion energy (S2n), charge radii, and two-neutron shell gap (δ2n), have been
carefully calculated and found to be in good agreement with the available ex-
perimental data. Also, a strong shell closure is clearly seen at the magic neutron
number N = 82.

1 Introduction

Currently, one of the primary focal points in both theoretical and experimental
nuclear structure studies is the investigation of shape phase transitions in the
ground state of atomic nuclei along isotopic chains. Neutron-rich nuclei within
the mass range A = 90 − 130 on the nuclear chart have attracted particular
attention from researchers. This region discloses a large number of interesting
discoveries of new phenomena, such as proton radioactivity [1], cluster radioac-
tivity [2], exotic shapes [3], island of inversion [4], giant halo near neutron drip-
line region [5], etc.

This specific mass region has garnered substantial interest and has been the
subject of extensive theoretical and experimental investigations. From the the-
oretical side, both relativistic [6] and nonrelativistic [7, 8] approaches agree in
the general description of the nuclear structural evolution in this mass region.
It has been shown that the equilibrium nuclear shapes suffer rapid changes as a
function of the number of nucleons with competing spherical, axially symmet-
ric prolate and oblate, and triaxial shapes at close energies. This is supported
experimentally by laser spectroscopy measurements [9] and spectroscopic stud-
ies [10, 11] as well as by 2+ lifetime measurements [12, 13].
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The evolution of nuclear structure has been extensively investigated through
numerous theoretical studies employing different formalisms, this includes the
relativistic mean-field (RMF) model [14,15], the interacting boson model (IBM) [16],
and the self-consistent mean-field models with the Skyrme and the Gogny force [17–
21].

Covariant density functional theory (CDFT) is one of the most attractive nu-
clear density functional theories based on energy density functionals. This the-
ory has proven to be highly successful in accurately describing the ground- and
excited-state properties of nuclei, encompassing both spherical and deformed
configurations across the entire nuclear chart.

In this study, we have examined the shape evolution of even-even palladium
(Pd, Z=46) isotopic chain across a broad spectrum of neutron numbers, ranging
from N=50 up to N=84. The calculations were performed using the covariant
density functional theory, employing two state-of-the-art functionals, namely the
density-dependent point-coupling DD-PC1 [22, 23] and the density-dependent
meson-exchange DD-ME2 [22, 24], which offer a comprehensive and precise
depiction of various ground states and excited states across the entire nuclear
chart [25–29].

The organization of this paper is as follows : In Section 2, a general overview
of the theoretical formalism is presented. The numerical results of the calcula-
tions are discussed and compared in Section 3. Section 4 contains a brief sum-
mary of the principal results.

2 Theoretical Framework

The primary focus of this study is the microscopic description of the axial and
triaxial shapes observed in neutron-rich Pd isotopes. The investigation has been
carried out using two classes of covariant density functional models, namely the
density-dependent meson-exchange (DD-ME) model, and the density-dependent
point-coupling (DD-PC) model. The main differences between these two models
revolve around the manner in which they handle the interaction range. DD-ME
and DD-PC are both density-dependent models but the first has a finite interac-
tion range, while the second uses a zero-range interaction with one additional
gradient term in the scalar-isoscalar channel.

Within the meson-exchange model framework, the nucleus is treated as a
system of Dirac nucleons that interact through the exchange of mesons with fi-
nite masses, resulting in finite-range interactions [30,31]. The isoscalar-scalar σ
meson, the isoscalar-vector ω meson, and the isovector-vector ρmeson build the
minimal set of meson fields for a quantitative description of nuclei. The meson-
exchange model is defined by the standard Lagrangian density with medium
dependence vertices [32]:

L = ψ̄ [γ(i∂ − gωω − gρ~ρ~τ − eA)−m− gσσ]ψ +
1

2
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2
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where m is the bare nucleon mass and ψ denotes the Dirac spinors. mσ , mω ,
andmρ are the masses of σ meson, ω meson, and ρmeson, respectively, with the
corresponding coupling constants for the mesons to the nucleons as gσ , gω , and
gρ, respectively, and e is the charge of the proton and it vanishes for neutrons.

The point-coupling model represents an alternative formulation of the self-
consistent Relativistic Mean Field (RMF) framework. [33–36]. The Lagrangian
for the DD-PC model [24, 37] includes the free-nucleon Lagrangian, the point
coupling interaction terms, and the coupling of the proton to the electromagnetic
field and can be written as :

L = ψ̄ (iγ · ∂ −m)ψ − 1

2
αS(ρ̂)

(
ψ̄ψ

) (
ψ̄ψ

)
− 1

2
αV (ρ̂)

(
ψ̄γµψ

) (
ψ̄γµψ

)
− 1

2
αTV (ρ̂)

(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
− 1

2
δS

(
∂vψ̄ψ

) (
∂vψ̄ψ

)
− eψ̄γ ·A (1− τ3)

2
ψ . (2)

The derivative terms in Eq. (2) account for the leading effects of finite-range
interaction which are important in nuclei. In analogy with DD-ME model, this
model contains isoscalar-scalar, isoscalar-vector and isovector-vector interac-
tions (see Refs. [22, 24] for more details).

3 Results and Discussion

In this section, we provide a detailed microscopic description of the Pd isotopic
chain, spanning from neutron numberN = 50 toN = 84. Our analysis involves
performing constrained calculations to obtain the axial and triaxial potential en-
ergy surfaces (PESs), along with studying various ground-state properties. To
carry out these calculations, we utilized the density-dependent effective interac-
tions DD-ME2 and DD-PC1.

In Figure 1, we display for each even-even Pd isotope (covering the mass
interval 96 6 A 6 130) the potential energy curves (PECs) as a function of the
deformation parameter, β2, obtained within the CDFT framework by using DD-
ME2 and DD-PC1 interactions. Positive values of β2 correspond to a prolate
deformation and negative values to an oblate deformation.

As we can see from Figure 1, the isotope 96Pd, which corresponds to the
shell closure at the neutron magic number N = 50, has a spherical shape. The
next isotope, 98Pd, starts to develop two shallow degenerate minima, prolate
and oblate, that correspond to a small value of β2. The 100−108Pd isotopes show
a similar structure, with a well-deformed prolate minimum, β2 ≈ 0.2, and an
oblate local minimum.

A transition from prolate to oblate shapes occurs smoothly between 108Pd(prolate)
and 110Pd(oblate). In 112−118Pd two minima appear, with a well-deformed
oblate minimum, β2 ≈ −0.25, and a prolate local minimum. As the mass num-
ber increases, the two well-deformed minima gradually disappear and we get a
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Figure 1. Potential energy curves
for 96−114Pd calculated using the
CDFT with the DD-ME2 force (red
dashed line) and with th DD-PC1
force (black solid line) as a function
of the axial quadrupole deformation
parameter β2.

sharp single minimum at 128Pd, which confirms the spherical shape at the magic
neutron number N = 82.

To investigate the dependence on γ, potential energy surfaces (PESs) have
been computed for Pd isotopes across the neutron number range fromN = 50 to
N = 84 in the (β2; γ) plane, where β2 quantify the deformation of the nucleus
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Figure 2. The total energy curves for
96−132Pd obtained within CDFT frame-
work with DD-ME2 sets as a function
of the axial quadrupole deformation pa-
rameter β2.

while γ measures the degree of triaxiality. The systematic process involves per-
forming constrained triaxial calculations that map the quadrupole deformation
space defined by β2 and γ, employing DD-ME2 and DD-PC1 effective interac-
tions.

In Figure 2 and Figure 3 we display the triaxial contour plots of 96−130Pd
isotopes in the β2 − γ plane using DD-ME2 and DD-PC1 parametrizations,
respectively. Energies are normalized with respect to the binding energy of the
global minimum.

From Figures 2 and 3, one can notice that the shape transition is very evi-
dent. It starts from the spherical (96Pd) to prolate (98−104Pd) deformation, and
to triaxial (106−112Pd) deformation, then shifted to oblate (114Pd) deformation.
The isotopes (116−120Pd) are characterized by a certain degree of triaxiality.
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Figure 3. Similar to Figure 2, but using
the DD-PC1 parametrization.

Afterwards, it evolves towards a prolate deformation (122−124Pd), and finally
the spherical shape is regained at (126−130Pd) in the vicinity of the shell closure
at the neutron magic number N = 82. These results are in good agreement with
the results shown in Figure 3 of Ref. [38]

The shape evolution observed in Pd isotopes in this section can be attributed
to changes in the values of several physical properties of the ground state, in-
cluding binding energy (BE), two neutron separation energies (S2n), charge
radii (Rc) and two-neutron shell gap δ2n. In Figures 4, 5, 6 and 7 we present
these physical properties as a function of the neutron number N in comparison
with the available experimental data.

36



Shape Evolution in Palladium Isotopic Chain

●

●
●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

■
■

■
■ ■ ■ ■

■
■

■

■

■

■

■

■

■

■

■

◆
◆

◆
◆ ◆ ◆

◆
◆

◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

● Exp. ■ DD-ME2 ◆ DD-PC1

50 55 60 65 70 75 80 85
8.0

8.2

8.4

8.6

8.8

Neutron Number N

B
E
/A

[M
e
V
]

Figure 4. The binding energies per nucleon for even-even 96−130Pd isotopes.

The binding energy per nucleon (BE/A) of ground states for palladium iso-
topes, 96−130Pd, are presented in Figure 4 as a function of the neutron number
N . The available experimental data [39] are also shown for comparison.

From Figure 4 it can be clearly seen that the experimental data are accurately
reproduced by the theoretical predictions.

The two-neutron septation energy, S2n(N,Z) = BE(N,Z) - BE(N − 2, Z),
is plotted in Figure 5 as a function of the neutron number (N ). The available
experimental data [39] are also shown for comparison.

As one can see from Figure 5, the results of the two density-dependent mod-
els DD-ME2 and DD-PC1 reproduce the experimental data very well. S2n grad-
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Figure 5. The two-neutron separation energies S2n, for even-even 96−130Pd isotopes,
obtained with DD-ME2 and DD-PC1, and compared with the available experimental
data [39].
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Figure 6. The charge radii of Pd isotopes.

ually decreases with N , and a sharp drop is clearly seen at N = 82, which
indicates the closed shell at this magic neutron number.

Figure 6 shows the charge radii calculated within CDFT with DD-ME2 and
DD-PC1 in comparison with the available experimental data [40]. The theory
and experiment exhibit a strong and evident agreement.

The two-neutron shell gap δ2n = S2n(N,Z) − S2n(N + 2, Z) is a more
sensitive observable for locating the shell closure. The variation of δ2n as a
function of the neutron number N is shown in Figure 7. The sharp peak in (δ2n)
clearly seen at N = 82 indicates the shell closure at this neutron magic number.
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Figure 7. The two-neutron shell gap δ2n for even-even 96−130Pd isotopes.
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4 Conclusion

In this work, we have investigated the structural evolution with the increase of
the number of neutrons in the isotopic chain of palladium, 96−130Pd, within the
framework of the CDFT, by using DD-PC1 and DD-ME2 functionals.

The analysis of the shape transition is done on the basis of the evolution
of the ground state shapes obtained within axial and triaxial potential energy
surface calculations. The transition from a spherical to a deformed shape is
prominently evident in the isotopic chain.

Some ground state properties such as binding energy, two-neutron separation
energy (S2n), charge radii and two-neutron shell gap (δ2n) have been calculated
and have been found to be in good agreement with the experimental data. The
observed smooth change in the ground state deformation is correlated with a
gradual evolution of the physical properties in the ground state. A distinct and
robust shell closure is evident at N = 82.
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