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Abstract. A systematic study of the isoscalar giant monopole resonance (IS-
GMR) in spherical and deformed nuclei from various isotopic chains is per-
formed within the microscopic self-consistent Skyrme HF+BCS method and
coherent density fluctuation model. The calculations for the incompressibility
in finite nuclei are based on the Brueckner energy-density functional for nuclear
matter. The good agreement achieved between the calculated centroid energies
of the ISGMR and their recent experimental values for various nuclei demon-
strates the relevance of the proposed theoretical approach. The latter can be
applied to analyses of neutron stars properties, such as incompressibility, sym-
metry energy, slope parameter, and other astrophysical quantities.

1 Introduction

The detailed information from measurements and theoretical studies of the iso-
scalar giant monopole resonance (ISGMR) plays an important role in constrain-
ing the nuclear equation of state (EOS) [1–6]. An important result is that the
energy of this resonance is closely related to the nuclear incompressibility. The
latter can be connected to the incompressibility of the infinite nuclear matter,
which represents an important ingredient of the nuclear matter EOS. To make the
EOS isospin asymmetry term more precise, recent experimental measurements
of isoscalar monopole modes are being extended in isotopic chains from the nu-
clei on the valley of stability towards exotic nuclei with larger proton–neutron
asymmetry. For instance, different measurements have been conducted on Ni
isotopes far from stability, namely 56Ni [7, 8] and 68Ni [9, 10]. In particular, the
68Ni experiment is the first measurement of the isoscalar monopole response in
a short-lived neutron-rich nucleus using inelastic alpha-particle scattering. The
peak of the ISGMR was found to be fragmented, indicating a possibility for a
soft monopole resonance.

In the present work (as well as in Ref. [11]), the incompressibility and the
centroid energy of ISGMR are investigated for Ni, Sn, and Pb isotopic chains on
the basis of the Brueckner energy-density functional (EDF) for nuclear mat-
ter [12, 13] and using the coherent density fluctuation model (CDFM) (e.g.,
Refs. [14, 15]). Our main purpose is to validate the CDFM for studies of collec-
tive vibrational modes by using as a main theoretical ground the self-consistent
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Hartree–Fock (HF)+BCS method with Skyrme interactions. The mentioned
above model gives a link between nuclear matter and finite nuclei in studying
of their properties, such as binding energies and rms radii of light, medium, and
heavy nuclei. We present and discuss the values of the centroid energies in Sn
isotopic chain (A=112-124) studying its isotopic sensitivity. The main reason
to select these chains of nuclei is partly supported by their recent intensive IS-
GMR measurements so that we focus too on the comparison with the available
experimental data for Ni [16], Sn [17], and Pb [18, 19] isotopes. In addition,
new results for the excitation energies of ISGMR for Ca, Fe, Zn, and Zr nuclei
are reported, as well as for deformed Mo and Cd isotopes inspired by the new
experimental data for them and the fully self-consistent quasiparticle random-
phase-approximation (QRPA) calculations (e.g., in [20]).

2 Theoretical Formalism

The centroid energy of ISGMR EISGMR is generally related to a finite nucleus
incompressibility ∆K(N,Z) for a nucleus withZ protons andN neutrons (A =
Z + N is the mass number). Among the various definitions of EISGMR we will
mention the one from, e.g., Ref. [21]:

EISGMR =
~

r0A1/3

√
∆K(N,Z)

m
, (1)

where r0 is deduced from the equilibrium density and m is the nucleon mass.
In the present work, describing the monopole vibrations in terms of harmonic
oscillations of the nuclear size and assuming an A1/3 law for it, we calculate
EISGMR by using Eq. (1). In it values of the parameter r0 between 1.07 and 1.2
fm are adopted, which are determined from experiments on particle scattering
off nuclei.

The symmetry energy S(ρ) is defined by the energy per particle for nuclear
matter (NM) E(ρ, δ) in terms of the isospin asymmetry δ = (ρn − ρp)/ρ

S(ρ) =
1

2

∂2E(ρ, δ)

∂δ2

∣∣∣∣
δ=0

, (2)

where
E(ρ, δ) = E(ρ, 0) + S(ρ)δ2 +O(δ4) + · · · (3)

and ρ = ρn + ρp is the baryon density with ρn and ρp denoting the neutron and
proton densities, respectively (see, e.g., [22–24]). The incompressibility (the
curvature) of the symmetry energy ∆KNM is given by

∆KNM = 9ρ20
∂2S

∂ρ2

∣∣∣∣
ρ=ρ0

, (4)

where ρ0 is the density at equilibrium.
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The CDFM was suggested and developed in Refs. [14, 15] (see also our re-
cent papers [22, 25]). Within the model the one-body density matrix (OBDM)
of the nucleus ρ(r, r′)

ρ(r, r′) =

∫ ∞

0

dx|F (x)|2ρx(r, r′) (5)

is expressed by OBDM’s of spherical “pieces” of nuclear matter (“fluctons”)
with radius x of all A nucleons uniformly distributed in it:

ρx(r, r′) = 3ρ0(x)
j1(kF (x)|r− r′|)
(kF (x)|r− r′|)

Θ

(
x− |r + r′|

2

)
. (6)

In Eq. (6) j1 is the first-order spherical Bessel function and kF (x) is the Fermi
momentum. It can be seen from Eq. (5) that the density distribution in the CDFM
is:

ρ(r) =

∫ ∞

0

dx|F (x)|2ρ0(x)Θ(x− |r|) (7)

with
ρ0(x) =

3A

4πx3
. (8)

It follows from Eq. (7) that the weight function |F (x)|2 of CDFM can be ob-
tained in the case of monotonically decreasing local densities (i.e., for dρ(r)/dr ≤
0) by

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

(9)

being normalized as ∫ ∞

0

dx|F (x)|2 = 1. (10)

In the case of the Brueckner method for nuclear matter energy [12, 13] the
asymmetric incompressibility has the form [26, 27]:

∆KNM (x) = −83.4ρ
2/3
0 (x) + 4b5ρ

4/3
0 (x) + 10b6ρ

5/3
0 (x) (11)

and contains the following values of the parameters: b5 = 372.84 and b6 =
−769.57. According to the CDFM scheme, the curvature for finite nuclei can be
expressed in the following form:

∆K =

∫ ∞

0

dx|F (x)|2∆KNM (x). (12)

In our calculations we apply self-consistent deformed Hartree–Fock method
with density-dependent Skyrme interactions [28] with pairing correlations. We
use the Skyrme SLy4 [29], Sk3 [30] and SGII [31] parametrizations. In addition,
we probe the SkM parameter set [32], which led to an appropriate description of
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bulk nuclear properties. All necessary expressions for the single-particle func-
tions and densities in the HF+BCS method can be found, e.g., in Ref. [26].

It is known that the value of the nuclear matter incompressibility ∆KNM

plays a key role in determining the location of the ISGMR centroid energy [17].
The different Skyrme parameter sets used in the present calculations are chosen
since they are characterized by different values of the nuclear incompressibil-
ity, ∆KNM = 230, 217, 215, and 355 MeV for SLy4, SkM, SGII, and Sk3,
respectively [33].

3 Results and Discussion

First, in Figure 1 we draw, as examples, the density distributions of 56Ni and
208Pb and the corresponding CDFM weight function |F (x)|2 as a function of
x. To fully specify the role of both quantities ∆KNM [ρ0(x)] and |F (x)|2 in
the expression (12) for the finite nuclei incompressibility ∆K and to locate the
relevant region of densities in finite nucleus calculations, we apply the same
physical criterion related to the weight function |F (x)|2, as in [22]. The criterion
is related to the width Γ of the weight function |F (x)|2 at its half maximum,
which is a good and acceptable choice. More specifically, we define the lower
limit of integration as the lower value of the radius x, xmin, corresponding to the
left point of the half-width Γ (for more details see the discussion in Refs. [22,
25]). One can see also in Figure 1 the part of the density distribution ρ(r) (at
r ≥ xmin) that is involved in the calculations.

The obtained centroid positions of the monopole mode calculated using Brueck-
ner EDF in the procedure [Eqs. (1), (11), and (12)] are compared with available
experimental data in Tables 1–3. It can be seen from Table 1 that a very good
agreement with the experimental data for 56,58,60Ni is obtained, while the re-
sults with both Skyrme interactions underestimate the experimental energy of
the soft monopole vibrations of 68Ni. The excitation energy of this ISGMR in

Figure 1. The densities ρ(r) (in fm−3) of 56Ni and 208Pb calculated in the Skyrme HF
+ BCS method with SLy4 force (normalized to A = 56 and A = 208, respectively) and
the weight function |F (x)|2 (in fm−1) normalized to unity [Eq. (10)].
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Table 1. The values of the centroid energies EISGMR (in MeV) of Ni isotopes obtained
from HF+CDFM calculations in this work using SLy4 and SkM Skyrme forces compared
with the experimental data found in the literature.

Nucleus SLy4 SkM Exp.
56Ni 19.41 19.57 19.1 ± 0.5 [8]

19.3 ± 0.5 [7]
58Ni 18.95 19.18 18.43 ± 0.15 [16]
60Ni 18.62 18.79 18.10(29) [16]
68Ni 17.46 17.70 21.1 ± 1.9 [9, 10]

Table 2. The values of the centroid energiesEISGMR (in MeV) of Sn isotopes (A=112-124)
obtained from HF+CDFM calculations in this work using SLy4, SGII, and Sk3 Skyrme
forces. The experimental data are taken from Table III of Ref. [17].

Nucleus SLy4 SGII Sk3 Exp.
112Sn 15.04 15.30 14.89 16.2 ± 0.1
114Sn 15.03 15.20 14.70 16.1 ± 0.1
116Sn 14.94 15.08 14.56 15.8 ± 0.1
118Sn 14.82 15.13 14.48 15.8 ± 0.1
120Sn 14.69 15.08 14.58 15.7 ± 0.1
122Sn 14.68 15.00 14.61 15.4 ± 0.1
124Sn 14.68 14.96 14.51 15.3 ± 0.1

Table 3. The values of the centroid energies EISGMR (in MeV) of Pb isotopes obtained
from HF+CDFM calculations in this work using SLy4 and SkM Skyrme forces compared
with the experimental data found in the literature.

Nucleus SLy4 SkM Exp. Theory
204Pb 12.16 12.29 13.98 [18]
206Pb 12.12 12.23 13.94 [18]
208Pb 12.10 12.15 13.96 ± 0.2 [19] 14.453 [34]

68Ni is located unexpectedly at higher energy (21.1 MeV) for the Ni isotopic
chain, having at the same time large error bars. The reason is due to the large
fragmentation of the isoscalar monopole strength in the unstable neutron-rich
68Ni nucleus, much more than in stable nuclei [9, 10]. The obtained values of
EISGMR for Sn isotopes (A = 112–124) exhibit small difference regarding the
Skyrme parametrization (see Table 2). The theoretical results for the centroid
energies for the same Sn isotopes obtained in Ref. [17] by using the SkP (be-
tween 14.87 and 15.60 MeV), SkM* (between 15.57 and 16.23 MeV), and SLy5
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Figure 2. The centroid energies EISGMR as a function of the mass number A for Ni, Sn,
and Pb isotopes in the case of SLy4 force obtained with three different values of the
parameter r0 = 1.07, 1.123, 1.2 fm [Eq. (1)] compared with the experimental data (see
Refs. in Tables 1-3).

(between 15.95 and 16.61 MeV) parameter sets are in good agreement with our
results. Almost no dependence on the Skyrme forces used in the calculations of
the centroid energies is found for Ni and Pb isotopes being slightly larger in the
case of SkM interaction than when using the SLy4 one.
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The collective (bulk) character of the giant resonances and nuclear incom-
pressibility presumes a quite smooth variation of the properties of the ISGMR
with mass, thus not expecting very strong variations related to the internal nu-
clear structure. The isotopic evolution of the centroid energies EISGMR for the
Ni, Sn, and Pb isotopes is presented in Figure 2. As a test of the role of the half-
density radius parameter r0 on the centroid energy [Eq. (1)], the results in the
case of SLy4 force with r0 = 1.2 fm (e.g., in Refs. [35, 36]), r0 = 1.07 fm (for
instance, in Ref. [37]), and r0 = 1.123 fm [38] are presented. It is seen that with
the increase of r0 the agreement with the experimental data becomes better for
lighter isotopes. Particularly, the value of r0 = 1.123 fm leads to fair agreement
of the ISGMR energies for Sn isotopes, while for Ni isotopes the experimental
data are reproduced better with r0 = 1.2 fm and for Pb isotopes with r0 = 1.07
fm. Here we would like to note that the specific choice of the r0 parameter val-
ues adopted to calculate the values of the centroid energies by using (1) is often
used in the literature. The values of the measured nuclear radii are deduced from
processes with strongly interacting particles or electron (muon) scattering. It is
well known that the A-dependence of r0 exhibits a smooth decrease with A be-
ing 1.07 fm for nuclei with A > 16 and increasing to 1.2 fm for heavy nuclei.
The results for the calculated values of EISGMR and the corresponding ranges of
change in respect to r0 are illustrated in Figure 2 by hatched areas. Thus, we find
a sensitivity of the results for centroid energies of ISGMR to the radial parame-

Table 4. The values of the centroid energies EISGMR (in MeV) of Ca, Fe, Zn, Zr, and
Mo isotopes obtained from HF+CDFM calculations in this work using SLy4 and SkM
Skyrme forces and r0 = 1.2 fm compared with the experimental data found in the litera-
ture.

Nucleus SLy4 SkM Exp.
40Ca 20.03 19.99 19.18 ± 0.37 [39]
42Ca 19.83 19.98 19.7 ± 0.1 [40]
44Ca 19.71 19.95 19.49 ± 0.34 [41]
46Ca 19.69 19.91
48Ca 19.71 19.89 19.88 ± 0.16 [39]
54Fe 19.45 19.62 19.66 ± 0.37 [42]
64Zn 17.82 17.94 18.88 ± 0.79 [42]
68Zn 17.24 17.42 16.60 ± 0.17 [42]
90Zr 16.05 16.17 16.9 ± 0.1 [43]
92Zr 15.82 15.94 16.5 ± 0.1 [43]
92Mo 15.99 16.12 16.6 ± 0.1 [43]
94Mo 15.78 15.90 16.4 ± 0.2 [43]
96Mo 15.52 15.62 16.3 ± 0.2 [43]
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Table 5. The values of the centroid energies EISGMR (in MeV) of Cd isotopes obtained
from HF+CDFM calculations in this work using SLy4 and SkM Skyrme forces and r0 =
1.123 fm. The experimental data are taken from Ref. [44].

Nucleus SLy4 SkM Exp.
106Cd 16.15 16.27 16.27 ± 0.09
110Cd 15.88 15.98 15.94 ± 0.07
112Cd 15.73 15.89 15.80 ± 0.05
114Cd 15.64 15.75 15.61 ± 0.08
116Cd 15.49 15.67 15.44 ± 0.06

ter r0 and this fact has to be taken into account when considering resonances in
light, medium, and heavy nuclei.

The calculated values of EISGMR with SLy4 and SkM forces for Ca, Fe, Zn,
Zr, Mo and Cd isotopes are given in Tables 4 and 5, respectively. An excellent
agreement with the available experimental data is achieved for Ca isotopic chain
and also for Cd chain. For the latter case our results fit very well the theoretical
predictions from QRPA calculations for the ISGMR peaks obtained with the
SV-bas Skyrme force [20].

4 Summary and Concluding Remarks

The main results of the present work can be summarized as follows:

i) A very good agreement is achieved between the calculated centroid ener-
gies of the ISGMR and corresponding experimental values for Ni isotopes when
r0 = 1.2 fm. Especially this concerns the exotic double-magic 56Ni nucleus, for
which the obtained (with SLy4 Skyrme force) value is 19.41 MeV, in consistency
with the centroid position of the ISGMR found at 19.1± 0.5 MeV.

ii) The comparative analysis of the centroid energies in the case of Sn and Pb
isotopes shows less agreement with r0 = 1.2 fm, but still in acceptable limits.

iii) The agreement with the experimental values of EISGMR can be improved
also by varying the parameter r0 in strong connection with the mass dependence
of this parameter and its effect for the considered isotopes.

iv) In general, the obtained results demonstrate the relevance of our theo-
retical approach to probe the excitation energy of the ISGMR in various nuclei.
The future goals are to extend this theoretical study by employing more realistic
energy-density functionals for nuclear matter and to expand the nuclear spectrum
to lighter and medium mass nuclei including isotopes with large proton-neutron
asymmetry.
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