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Abstract. We will provide a brief summary of the status regarding the density
dependence of the symmetry energy and related issues of contemporary interest.
We will then move to the recent measurement of the neutron skin in 48Ca and
discuss it in the context of existing measurements and predictions. We will
close with our current work on low-density neutron matter and the unitary limit.
The overarching theme is the importance of constraints from low-energy few-
nucleon physics for neutron matter and the symmetry energy.

1 Introduction

The physics of neutron matter (NM) spans a broad range of densities. At low
density, it approaches universal behavior as a consequence of the large neutron-
neutron scattering length in the spin-singlet channel. Around normal nuclear
density, it is an appropriate laboratory to study neutron-rich nuclei, and, at even
higher densities, it constrains the physics of neutron stars. Although an ideal-
ized system, neutron matter provides unique opportunities to test nuclear forces,
because all low-energy constants appearing in the three-neutron forces are pre-
dicted at the two-neutron level.

Isospin-asymmetric nuclear matter is characterized by the degree of neutron
excess, all the way to pure neutron matter. Of paramount importance for the
description of isospin-asymmetric nuclear system is the symmetry energy. In
the so-called parabolic approximation for the equation of state (EoS) of isospin-
symmetric nuclear matter,

e(ρ, α) ≈ e0(ρ) + esym(ρ) α
2 , (1)

where α = (ρn − ρp)/ρ, the symmetry energy becomes

esym(ρ) = en(ρ)− e0(ρ) , (2)

where en(ρ) is the energy per neutron in pure NM, and e0(ρ) is the energy per
nucleon in symmetric nuclear matter (SNM). Expanding the symmetry energy
about the saturation point, we obtain

esym(ρ) ≈ esym(ρ0) + L
ρ− ρ0
3ρ0

+
Ksym

2

(ρ− ρ0)2

(3ρ0)2
, (3)
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which helps identifying several useful parameters. L is known as the slope pa-
rameter, as it is a measure of the slope of the symmetry energy at saturation:

L = 3ρ0

(∂esym(ρ)

∂ρ

)
ρ0
. (4)

Furthermore, it is clear from Eqs. (2) and (4), recalling that the SNM EoS has
vanishing derivative at that point, that Lmeasures the degree of “stiffness” of the
NM EoS at saturation density. The symmetry energy slope, essentially a pressure
gradient acting on excess neutrons in the neutron-enriched core, determines the
formation and size of the neutron skin.

Since many years several groups have sought constraints on the density de-
pendence of the symmetry energy. Intense experimental effort has been and
continues to be devoted to this question using various measurements, which
are typically analyzed with the help of correlations obtained through different
parametrizations of phenomenological models. Here, we will emphasize the im-
portance of the ab initio approach towards robust predictions of NM and the
symmetry energy.

We will also discuss our on-going work on low-density NM, with emphasis
on the unitary limit as a constraint for the symmetry energy.

2 Brief Review of Theoretical Tools

The interactions we use are derived from chiral effective field theory (EFT) [1],
which provides a path to a consistent development of nuclear forces. Symmetries
relevant to low-energy QCD are incorporated in the theory, in particular chiral
symmetry. Thus, although the degrees of freedom are pions and nucleons instead
of quarks and gluons, there exists a solid connection with the fundamental theory
of strong interactions through its symmetries and the mechanism of their break-
ing. Chiral EFT employs a power counting scheme in which the progression of
two- and many-nucleon forces is constructed following a well-defined hierarchy.
This allows for the inclusion of all three-nucleon forces (3NFs) which appear at
a given order, thus eliminating the inconsistencies which are unavoidable when
adopting meson-theoretic or phenomenological forces. Finally, it provides a
clear method for controlling the truncation error at each order. Detailed infor-
mation on our calculations, including the values of the LECs, can be found in
Refs. [2, 3].

The EoS for neutron matter is obtained at the leading-order in the hole-line
expansion—namely, via a non-perturbative summation of the particle–particle
ladders. The single-neutron potentials are computed self-consistently with the
G-matrix, employing a continuous spectrum.
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3 Neutron Matter: Impact of the Isovector Component of the Free-
Space Nucleon-Nucleon Force

In the impressive analysis in Ref. [4], 109 nuclear force parametrizations consis-
tent with chiral EFT are examined. Employing state-of-the-art statistical meth-
ods and computational technology, the authors are able to make quantitative
predictions for bulk properties and skin thickness of 208Pb. In the process, they
find a strong correlation betweenL and the 1S0 phase shift at laboratory energies
around 50 MeV.

We performed a calculation which serves as a simple and transparent test of
the impact of the isovector part of the free-space NN force in neutron matter.
We consider 2NFs only.

For the purpose of this test, we constructed a version of the N3LO(450)
potential where the fit of isospin-1 partial waves is deteriorated as compared to
the original potential, see Figure 1. This is accomplished by adjusting two LECs
in 1S0 channel and one LEC for each of the P -waves (all changes are on average
between 2 and 10%), while keeping the scattering length at its correct value.
Although not dramatic, the impact on the phase shifts is considerable, especially
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Figure 1. Phase shifts for selected isospin-1 partial waves as a function of the labora-
tory energy. Solid black: original N3LO(450) potential; Red dash: modified version as
explained in the text..
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Figure 2. Energy per neutron in NM as a function of NM density. Solid black: original
N3LO(450) potential; Red dash: modified version. See text for details.

above 100 MeV. We then calculate the EoS of NM with the modified potential,
see Figure 2. Around saturation, the energy moves up by about 25%, while the
(very sensitive) slope and closely related pressure increase by a factor of 1.75.
This comparison is shown in Table 1. In other words, the “modified” phase shifts
are not disastrous, but the slope of the NM EoS changes dramatically.

Notice that our modified interaction is only very little different from the orig-
inal interaction below 100 MeV, confirming extreme sensitivity of the neutron
matter slope (and thus the slope of the symmetry energy) to the description of
the isovector component of the NN interaction. On the other hand, this simple
exercise suffices to demonstrate that relaxing or abandoning the constraint of
free-space NN data can produce dramatic changes in L (and thus the neutron
skin).

Table 1. The energy per neutron, its slope, and the pressure at a density of 0.155 fm−3

with the original N3LO(450) potential and the modified version as explained in the text.
Only the 2NF is included.

Calculated quantity N3LO(450) modified potential

en(ρ0) (MeV) 11.11 13.88(∂en(ρ)
∂ρ

)
ρ0

(MeV/fm−3) 39.79 70.03

P (ρ0) (MeV/fm3) 0.956 1.68
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The freedom to modify a model in such a way that isovector properties (such
as the slope of the NM EoS) vary while retaining good fits to nuclei and nuclear
matter, is the mechanism that generates the popular correlations from mean-field
models. However, free-space NN data do not enter in this picture, contrary to
the basic principle of ab initio predictions. Also, variations within the model
parameter space are generally applied to predefined analytical expressions, such
as power laws of the density.

4 Symmetry Energy and Neutron Skin: Predictions and
Measurements

In Table 2, we show our latest results for the symmetry energy and closely related
quantities, all of which are on the smaller side of the current range of predictions
and measurements. We note that these values are typical of ab initio predictions
based on chiral EFT, as well as a number of nuclear experiments [5] and far from
the findings of PREX-II [6].

Table 2. Our predictions for: the symmetry energy at saturation, the L parameter,
the neutron skin of 208Pb, and the radius of a neutron star with mass equal to 1.4 solar
masses [2, 3].

Calculated quantity N3LO(450) prediction

esym(ρ0) (MeV) 31.3 ± 0.8
L (MeV) 50 ± 8.0

S(208Pb) (fm) 1.3 – 1.7
R1.4 (km) 11.96 ± 0.80

The parity-violating experiment with 48Ca has been recently completed [7].
The extracted neutron skin is S = (0.121±0.026±0.024) fm. This small value
would not be expected based on the PREX-II results, as the two nuclei are not
very different in terms of isospin asymmetry, see Figure 3, where the neutron
skin of selected nuclei is shown vs. the isospin asymmetry, (N − Z)/A. The
predictions are from Ref. [8].

Table 3. Summary of recent ab initio predictions for the neutron skin in 208Pb and in
48Ca.

Nucleus Neutron skin (fm)–Source
208Pb 0.14–0.20 Ref. [4]
48Ca 0.120–0.150 Ref. [10]
208Pb 0.184–0.236 Ref. [11]
48Ca 0.114–0.186 Ref. [11]
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Figure 3. Red bars: Neutron skin of 58Ni, 27Al, 59Co, 90Zr, 48Ca, and 208Pb [8]. The
shaded area is bounded by linear fits to the data [9].

In Table 3, we display some recent ab initio predictions for the neutron skin
in 48Ca and 208Pb. Note, though, that the value for 208Pb in Ref. [11] was
obtained from a linear regression fitted to lighter nuclei.

The points in Figure 4 are extracted from Ref. [12] and give the neutron skin
in 48Ca (left) and 208Pb (right) obtained from a variety of experimental methods.

In summary, CREX and PREX-II outcomes are not consistent with each
other. We anxiously await to hear from MREX (Mainz Radius Experiment) at

 

Figure 4. The neutron skin in 48Ca (left) and 208Pb (right) extracted from various ex-
periments including elastic proton scattering, elastic polarized proton scattering, pionic
atoms, pion scattering, α scattering, antiproton annihilation, coherent π0γ production.
The sources for each of the points are given in Ref. [12]. The rightmost point for Calcium
is the result from CREX, and the rightmost point for Lead is the result from PREX-II.
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the MESA accelerator. The Mainz Radius EXperiment (MREX) will determine
the neutron-skin thickness of 208Pb with ultimate precision [13].

5 Low-Density Neutron Matter

A unitary Fermi gas is an idealized system of fermions with a zero-range in-
teraction having an infinite (negative) scattering length. All properties of this
interacting gas are simply proportional to the corresponding ones in the non-
interacting system at the same density. The model of a dilute quantum gas can
describe diverse systems and can be applied in different areas of physics. At
the low temperatures required to observe quantum phenomena in a dilute gas,
the type of fermions and the exact form of the interaction become unimportant
for the macroscopic properties of the system. For these reasons, results from
the field of cold gases can give insight into systems such as NM at subnuclear
densities. This unique feature of interacting Fermi gases – unitarity – can be
generalized to any system of fermions subjected to mutual interactions with di-
verging scattering lengths. The unitary limit was first introduced in 1999 by
Bertsch [14], who proposed to model low-density neutron matter as a Fermi gas
where

re � k−1
F � |as| , implying kF |as| � 1 . (5)

Universality of unitary systems implies that the ground state energy at the unitary
limit should be given by

E(kF ) = ξEFG(kF ) , (6)

where ξ is known as the Bertsch parameter and EFG(kF ) is the energy of the
corresponding non-interacting Fermi gas. Measurements of the Berstch parame-
ter with ultra-cold atomic gases reported values ranging from ∼ 0.36 to ∼ 0.51.

A few years ago, Tews et al. [15] proposed the existence of a lower limit
on the energy of NM based on unitarity. With an eye on recent results from
electroweak scattering, here we revisit that discussion for the purpose of em-
phasising the importance of low-energy constraints for NM and the symmetry
energy [16].

A lower limit on the energy of NM based on unitarity implies:

ENM(ρ) ≥ EUG(ρ) , (7)

where UG stands for unitary gas. Thus:

ENM(ρ) ≥ EUG(ρ) = ξ0EFG(ρ) , (8)

where ξ0 is the Bertsch parameter, and EFG is the energy of the non-interacting
Fermi gas,

EFG =
3~2k2F
10m

, kF = (3π2ρ)1/3 . (9)
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Thus, in the parabolic approximation to the symmetry energy, Eq. (2), we can
write

Esym(ρ) = ENM(ρ)− ESNM(ρ) ≥ EUG(ρ)− ESNM(ρ) , (10)

where SNM signifies symmetric nuclear matter.
There exist “established” expansions of the energy in SNM in terms of the

saturation parameters E0 = E(ρ0) and the incompressibility K0. The next term
in the expansion is the skewness, Q0, which is poorly known. To streamline the
notation, we express density in units of saturation density and define u = ρ/ρ0.
The expansion of the SNM energy is then written as

ESNM(u) = ESNM(u = 1) +
K0

18
(u− 1)2 +

Q0

162
(u− 1)3 + · · · , (11)

where u = 1 at ρ = ρ0 = 0.16 fm−3, ESNM(u = 1) = E0 = −16 MeV, and
K0 = 230 MeV. In Ref. [15], some estimates are made for Q0. Clearly, reliable
constraints on these parameters must be available from independent sources. It
must be emphasized, though, that the specific values are not very relevant for
the present discussion, which is a qualitative demonstration of how the unitarity
constraint propagates.

From Eq. (10) and Eq. (11), ignoring higher-order terms in the SNM expan-
sion, one can write

Esym(u) ≥ EUG(u)−
(
E0 +

K0

18
(u− 1)2 +

Q0

162
(u− 1)3

)
. (12)

Furthermore, replacing the symmetry energy with its well-know expansion about
saturation density,

Esym(u) =Esym,0 +
L

3
(u− 1) +

Ksym

18
(u− 1)2 + · · · ... ,

Esym,0 = Esym(u = 1) ,
(13)

one can turn Eq. (12) into a constraint for L, the slope of the symmetry energy
at saturation. For the purpose of this exercise [15], and for consistency, one
term beyond the leading order is retained in both the expansion of the symmetry
energy and the SNM energy, that is, Q0 = Ksym = 0. Thus,

Esym(u) ≈ Esym,0 +
L

3
(u− 1) , (14)

and Eq. (12) is written as

Esym,0 +
L

3
(u− 1) ≥ EUG(u)−

(
E0 −

K0

18
(u− 1)2

)
. (15)

So, for a chosen value of Esym,0, one can write, for u > 1:

L ≥ 3

(u− 1)

(
EUG(u)− E0 −

K0

18
(u− 1)2 − Esym,0

)
, (16)
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and, for u < 1:

L ≤ 3

(u− 1)

(
EUG(u)− E0 +

K0

18
(u− 1)2 − Esym,0

)
, (17)

thus setting a lower and an upper limit to L. Proceeding along these lines, one
can then construct a contour in the (L−Esym,0) plane. Obviously, unitarity is one
of many constraints, from both microscopic theory and experiments, to be con-
sidered carefully and vetted for consistency. The focal point of this discussion is
to emphasize the inherent connection between NM and low-energy few-nucleon
systems, due to the proximity of few-nucleon systems to the unitary limit.

6 Conclusion

Neutron matter from low to high density offers the opportunity to test nuclear
forces in nuclear as well as astrophysical systems.

The density dependence of the symmetry energy, which controls the pressure
in NM, continues to be debated. From the current status of microscopic predic-
tions and experiments, we conclude that the large 208Pb neutron skin extracted
from PREX-II is the outlier. The upcoming MREX experiment should be quite
insightful.

Within our overarching theme to advance microscopic nuclear physics, we
have embarked in the challenging task of computing the chiral 3NF at N4LO.
Convergence at N3LO needs to be on robust grounds. The 3NF at N4LO will
generate non-locality, and, perhaps, the additional softness needed to solve one
or more outstanding problems in nuclear structure [17].
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