Isomeric Structure in ¹⁰⁰Sn Region: Possible Competition between β^+ Decay and Proton Emission in Isomeric Unbound Nucleus ⁹⁷Sn

Boshuai Cai

Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, 519082 Zhuhai, China

The isomeric structure and properties in proton-rich nuclides are crucial for determining the path of the rapid proton capture (rp)-process. For example, bound nuclei inside the dripline can have unbound isomeric states and change the rp-process pathway. The configuration interaction shell model (CISM) is used to investigate nuclei around the Z = N line at the south-west region of 100 Sn. The excitation mechanism of $1/2_1^-$ isomers is identified as dominated by exciting one nucleon in the $1p_{1/2}$ orbit to the $0g_{9/2}$ orbit. The study explores the decay properties of both the ground and isomeric states. Remarkably, competitive β^+ decay and proton emission are predicted in the unbound $1/2_1^-$ isomer of 97 Sn, suggesting potential influences on the rp-process pathway.