Superscaling Analysis of Inclusive Electron and Neutrino (Antineutrino) Scattering within the Coherent Density Fluctuation Model

M.V. Ivanov, A.N. Antonov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

The experimental data from quasielastic electron and (anti)neutrino scattering on ¹²C are reanalyzed in terms of a new scaling variable ψ^* suggested by the interacting relativistic Fermi gas model with scalar and vector interactions, which is known to generate a relativistic effective mass for the interacting nucleons. We construct a new scaling function $f^{\rm QE}(\psi^*)$ for the inclusive lepton scattering from nuclei within the coherent density fluctuation model (CDFM). The latter is a natural extension of the relativistic Fermi gas (RFG) model to finite nuclei. In this work, on the basis of the scaling function obtained within CDFM with a relativistic effective mass $m_N^* = 0.8m_N$, we calculate and compare the theoretical predictions with a large set of experimental data for inclusive (e, e') and (anti)neutrino cross sections. The model also includes the contribution of weak two-body currents in the two-particle two-hole sector, evaluated within a fully RFG. Good agreement with experimental data is found over the whole range of electron and (anti)neutrino energies.